The Birch Reduction of Aromatic Compounds

Peter W. Rabideau, Louisiana State University, Baton Rouge, Louisiana Zbigniew Marcinow, Academy of Agriculture, Wroclaw, Poland

1. Introduction

The reduction of aromatic compounds by alkali metals in liquid ammonia represents an important method for the preparation of partially unsaturated six-membered rings. The reaction was discovered by Wooster and Godfrey, (1) but the major development resulted from the efforts of A. J. Birch, (2, 3) and the reaction has since come to bear his name. Although a variety of metals

can be used, the most common are sodium and lithium, and, to a lesser extent, potassium. Cosolvents such as ether or tetrahydrofuran (THF) are often used to improve solubility, and weak acids such as alcohols may be employed during the reaction as proton sources. The latter are necessary for the reduction of benzene and its unactivated derivatives. Improvement in experimental procedures by Wilds and Nelson, (4) the application to polynuclear compounds by Hückel (5) and later by Harvey, 3f and the development of methods for the alkylation of the anions generated in this process (i.e., reductive alkylation) have made this reaction an important approach to the synthesis of a wide variety of organic compounds. (6)

2. Mechanism, Regiochemistry, and Stereochemistry

2.1. Mechanism

Alkali metals dissolve in liquid ammonia to produce deep blue solutions that behave as if they contain metal cations and solvated electrons, and provide an excellent reducing medium. (7, 8) As shown in Eq. 1, the aromatic substrate accepts an electron to produce a radical anion in equilibrium with the reactant. In the presence of an alcohol, the radical anion may be protonated to furnish a radical which quickly adds an electron resulting in a monoanion (Eq. 2a). In the absence of an alcohol, the radical anion may simply persist in low concentration, (9, 10) and the addition of a stronger acid, like water or ammonium chloride, generally destroys metal faster than protonation of the radical anions can occur. Under these circumstances, little or no product is obtained since the equilibrium is shifted to the left. With substrates such as activated benzenes and polynuclear compounds, which have relatively high electron affinities, the radical anion can accept a second electron to afford a dianion (Eq. 2b). The dianion is then protonated by alcohol, if present, or more slowly by ammonia in the absence of alcohols, to provide the same monoanion as in Eq. 2a. This scheme suggests that with highly reactive substrates in the presence of an alcohol, both radical anions and dianions may be protonated during the rate-determining step. For example, both the radical

$$ArH \xrightarrow{+e^{-}} ArH^{r} \qquad (1)$$

$$a. ArH^{r} \xrightarrow{ROH} ArH_{2}^{\cdot} \xrightarrow{e^{-}} ArH_{2}^{-}$$

$$b. ArH^{r} \xrightarrow{e^{-}} ArH^{r} \xrightarrow{ROH} ArH_{2}^{\cdot} ArH_{2}^{-}$$

$$a. ArH_{2}^{-} \xrightarrow{ROH} ArH^{-} ArH_{3}^{-} ArH_{3}^{-}$$

$$b. ArH_{2}^{-} \xrightarrow{ROH} H_{2}O \xrightarrow{RTH_{3}} ArH_{3}$$

$$b. ArH_{2}^{-} \xrightarrow{RTH_{2}O} ArH_{3} \qquad (3)$$

$$c. ArH_{2}^{-} \xrightarrow{RTH_{3}O} ArH_{3}$$

anion and the dianion are protonated in the rate-determining step when anthracene is reduced in the presence of *tert*-butyl alcohol (but not methanol, ethanol, isopropyl alcohol, or water). (8)

Depending on the basicity of the monoanion, it can be protonated by an

alcohol, if present, or by ammonia in the absence of an alcohol. Anions that are singly allylic or benzylic are protonated rapidly by ammonia. Examples include the reduction of styrene, stilbene, and phenanthrene. However, doubly benzylic anions, which are formed from anthracene, for example, appear to be persistent. Borderline basicity is provided by the dihydronaphthalene monoanion, formed as an intermediate in the reduction of naphthalene. The lithium salt is protonated in ammonia, especially at reflux temperature, whereas the sodium salt is considerably more resistant to protonation, especially at -78° . (11)

Aromatic compounds may be considered to fall into three classes with respect to their Birch reduction behavior. Class 1: Benzene and its unactivated derivatives, including alkylbenzenes, aryl ethers, and aminobenzenes, follow the pathway described by Eq. 2a. Alcohols are necessary for reduction to occur, and alkylation of anionic intermediates is not possible. Class 2: Activated benzenes such as benzoates and biphenyls, and many polynuclear aromatics with two, three, and four rings; these systems follow Eq. 2b. Alcohols are not necessary for the reduction of Class 2 systems, and, in fact, should generally be avoided since if present in amounts exceeding one equivalent, they usually cause overreduction. Alkylation of the final monoanions is possible in these cases, and unless an equivalent of an alcohol is added to prevent the amide formation which occurs when the dianion is protonated by ammonia, additional alkylation may take place. This result is due to a second deprotonation/alkylation step occurring after the initial alkylation. Complications may arise when the monoanion is itself protonated by ammonia; phenanthrene is an example. The dihydrophenanthrene monoanion is protonated by ammonia (Eq. 3a) and the resulting neutral compound, which is a biphenyl, is highly reactive under the reduction conditions. Compounds of this type are difficult to reduce without overreduction. Class 3: Systems which form dianions resistant to protonation by ammonia. This result is to be expected only for large polynuclear compounds or compounds that involve

Class 1 Systems

special stabilization such as an aromatic dianion. Cyclooctatetraene (1) represents a compound in which the original $4n \pi$ electron system is converted into a 4n + 2 system 2 by the addition of two electrons. It is interesting to note that while conversion into an aromatic dianion assists reduction, the converse is not true. Anthracene (3) is converted into the (formally) antiaromatic dianion 4 by the acceptance of two electrons, yet the dianion is easily formed. (12) Solvation and ion triplet formation must play an important role, mitigating the electronic effects. (13)

Birch reduction may be accompanied by a number of side reactions. Among the most important are bond cleavage, dimerization, and substituent group reduction. Bond cleavage can result in the loss of a number of substituent groups (3) including benzylic oxygens in various forms; allyl, benzyl, and aryl ethers; and halogen and S-benzyl groups. Certain carbon–carbon bonds may also be cleaved during reduction, although this process is much more common in solvents other than ammonia. The mechanism of cleavage involves one of the three pathways shown in Eqs. 4–6, depending on the nature of both the aromatic moiety and the substituent. (14)

In principle, dimerization of the radical anions can also occur to provide the dianion illustrated in Eq. 7. However, this process is generally not observed under Birch reduction conditions with some exceptions. For example,

dimerization is the primary reaction pathway for pyridine radical anions in liquid ammonia when generated in the absence of alcohols. (15) Dimerization through the carbonyl carbon is also quite common with the reduction of ketones. 3k

Finally, with certain substituents such as carbonyl groups, protonation of the radical anion or dianion may occur at the substituent group itself (i.e., **5**) since this position may represent a site of relatively high negative charge.

This is especially true for otherwise unsubstituted benzenes or benzenes with additional substituents that are electron donors. In these cases, reduction may take place exclusively at the substituent, and the aromatic ring may not be reduced at all.

2.2. Regiochemistry

The Birch reduction of benzene derivatives generally gives nonconjugated cyclohexadienes with electron-withdrawing substituents enhancing reaction rates and occupying a saturated position in the product **6**; electron-donating substituents decrease rates and occupy a vinyl position in product

7. (3, 16-20) This behavior follows the "Birch rule:" electron-donating substituents direct reduction so that the major product has the maximum number of such groups attached to the residual double bonds, and a minimum of these groups are located at the allylic sites. 3a

The observation of conjugated products in some reactions is usually the result of isomerization of an initial nonconjugated product. This is most common with carbonyl or other substituent groups that may conjugate with a double bond, as shown for the conversion of 8 into 9.

Perhaps surprisingly, there is little difference in thermodynamic stability between 1,4-cyclohexadiene and 1,3-cyclohexadiene. With some substitution patterns, the nonconjugated isomer is actually more stable than its conjugated counterpart. (21) Apparently there is little stabilization in the conjugated isomer since the double bonds are not coplanar. (22)

With polynuclear compounds, reduction may occur 1,4 across an aromatic ring (10 from anthracene), 1,2 across an aromatic ring (11 from phenanthrene), or across more than one ring (12 from pyrene). Initial protonation is considered to take place at the position of highest electron density in the

dianion. There is reasonable correlation between experimental results and predictions based on SCF MO theory (23-28) and electrostatic potential maps,

(17) although a number of exceptions exist. However, questions concerning protonation sites in dianions arise, (29) and the correct assignment is often provided by assuming that protonation of the dianion will take place to produce the most stable monoanion; *this appears to give a good prediction of regiochemistry whether or not the reaction is actually driven by monoanion stability*.

The effect of substituents on the regiochemistry of the reduction of polynuclear aromatic compounds is sometimes complex. In the simplest example, napththalenes, electron donors in one ring often lead to reduction in the other ring, but this is not always true (see below). Similarly, electron-withdrawing substituents, especially at the β position, may not always lead to exclusive reduction in the substituted ring. Compounds for which the dianionic intermediates have substantial localization of negative charge at a specific site, for example the 9 and 10 positions in anthracene dianion, often are reduced with the same regiochemistry regardless of substitution pattern.

2.3. Stereochemistry

The stereochemistry of the reduction of nonrigid systems is determined by the stereochemistry of protonation of the final monoanion (Eq. 3). This is controlled by a number of factors, including the nature of R and $R\phi$, and the hybridization at the anionic center. The simplest model is provided by the cyclohexadienyl anion **13**. When $R\phi$ is hydrogen, protonation occurs equally

well from either side of the anion. Reduction of benzene- d_6 provides equal amounts of *cis* and *trans* (diprotio) products. (30) When R and R' are trimethylsilyl, a significant steric effect develops for protonation on the R' side, and consequently the *cis* isomer predominates by 4:1 with either metal/ammonia reduction (31) or electrochemical reduction in methylamine. (32) Predominance of the *cis* isomer is slightly less (3:1) for the electrochemical reduction of 4-trimethylsilyltoluene, as might be expected by the decrease in size of R' from trimethylsilyl to methyl. In the reduction of 4-isopropylbenzoic acid, however, the *trans* product is favored by 2:1, and with 4-*tert*-butylbenzoic acid, the *trans* isomer is formed exclusively. Clearly model 13 fails for these reactions. When R is a π substituent, the model 14, which takes the overlap of the π

substituent with the anionic center into account, becomes useful. In fact, this overlap demands a nonplanar structure because of the interference of the oxygens with the nearby vinyl hydrogens. These atoms cannot all be in the same plane, and the ring folds slightly with R' occupying the pseudoaxial position. (22) This causes the vinyl hydrogens to block the bottom lobe of the anion orbital. Hence protonation is preferable from the topside; this is the case even if protonation occurs through the enol or is metal-directed.

When the 1,4-cyclohexadiene ring generated during reduction is part of a larger polynuclear system, the ability of the six-membered ring and its anion to adopt variable folding angles leads to even more complex stereochemistry. These folding angles, defined by the angle between the two planes containing the vinyl carbons, may vary from 180° (planar) to 145° (highly puckered) in the neutral compounds, (22) with a correspondingly greater tendency toward planarity in the monoanion. 3h However, enolates in polynuclear systems should be considerably more folded than 14, since the replacement of the vinyl double bond with an aromatic ring provides an even greater steric interaction due to the *peri* hydrogens.

The reduction of esters **15** where R is *O-tert*-butyl and R' is either methyl or ethyl gives a slight excess of *trans* products (60:40). (33) However, when R is methyl, the methyl ketones show a predominance of the *cis* product that increases in the series Me < Et < *i*-Pr for values of R', with relative yields of 60, 70, and 75% respectively. (33) Neither the ester nor the ketone products isomerize under the conditions used for the workup of the reaction. The

change from *trans* to *cis* products may result from greater enolate character in the intermediate monoanion derived from the ketones, producing a greater degree of ring folding. Even more ring folding is expected for the anions derived from **16** (34) because of increased *peri* interactions, and reduction produces exclusively *cis* products with either ketones or esters. (33) Interestingly, 9,10-dialkylanthracenes **17** afford greater amounts of *trans*

products when R and R' are primary, with a changeover to *cis* as the alkyl groups become larger. (35) Apparently the monoanion derived from 17 when R and R' are sterically small is relatively flat, in contrast to that from 16, as suggested by both experiment (36) and theory. (37)

The pattern that emerges can be rationalized, although the prediction of product ratios remains difficult. Planar anions such as **18** are expected to show little stereoselectivity, with *cis* products favored, because of a small steric effect from R'. Systems with modest folding such as **19** will be protonated

preferentially in the pseudoaxial position to give *trans* products. With more highly folded structures like **20**, the bottom lobe of the anion orbital angles out to become more accessible, and at the same time $R\phi$ is forced closer to the anionic center. Both of these effects promote protonation from the bottom to produce *cis* products. Hence even though the reasons for the observed stereochemical behavior may be understood, it remains difficult to predict product outcome when the geometry of the monoanion is not known.

In systems for which reduction occurs in a 1,2 fashion, stereochemistry is more easily predicted since the geometry of 1,3-cyclohexadienes is better defined. (22) For example, substituents prefer the pseudoaxial position in 9,10-dihydrophenanthrenes, and the likely conformation of the monoanion can be

described as **21**. Of course, there may be some pyramidalization at the anionic center, depending on the nature of R, but the anion will prefer to be pseudoaxial to maximize overlap with the adjacent aromatic ring. In either case, protonation will occur from the top resulting in *cis* products, as observed. (38)

The stereochemistry of reductive alkylation, where alkyl halides are added prior to the final quench, follows generally the same pattern as reduction. However, the larger size of the alkylating agents leads to more sensitivity to steric interference, and effects from possible prior coordination with the metal are absent. Stereoselectivity may be further increased by the use of chiral substrates, as demonstrated for the reductive alkylation of a number of chiral benzamides. (39) For example, the optically active benzoxazepinone 22 reacts

with potassium, sodium, or lithium in ammonia containing one equivalent of *tert*-butyl alcohol, followed by addition of alkyl halide, to give product ratios for 23/24 of 85:15 for R = methyl, and 98:2 to 99:1 for larger R groups.

This behavior may be understood by the enolate model **25**, in which the top face appears to be more accessible to the electrophile. Even greater diastereoselectivity is shown by **26**; **27** is produced with a 260:1 selectivity relative to methylation on the opposite side. (39)

2.4. Regiochemistry and Stereochemistry—Intramolecular Effects

Although nonconjugated double bonds are generally not reduced under Birch conditions, norbornadiene and a number of related compounds are quite reactive. (40) For example, the reduction of **28** and **29** with sodium/ammonia in the presence of *tert*-butyl alcohol results in double bond reduction

predominating over aromatic ring reduction in ratios of 2.1:1 and 10:1, respectively. This behavior is a consequence of orbital interactions through space, and orbital interactions through bonds. (41) Additional examples involve unsaturated sites separated by three, four, five, and six σ bonds. (40)

Reactivity, regiochemistry, and stereochemistry are also affected by the presence of hydroxy groups. When OR in **30** is hydroxy, an allyl or phenyl group at the 16 β position is reduced. However, when the hydroxy group is protected, as in **30b**, the 16 β substituents are left intact, suggesting the importance

of intramolecular protonation. (42) Ether **31a** reacts only slowly with lithium to produce the expected 1,4-cyclohexadiene **32**, but when R = OH,

the reaction is fast to produce **33**. Hence regiochemistry, and presumably stereochemistry, are controlled by internal protonation of the radical anion intermediate. (43) Similar rate and/or regiochemical effects are observed for the reductions of **34–37**. (44-48)

3. Scope and Limitations

3.1. The Reduction of Polynuclear Aromatic Compounds

Polynuclear aromatic compounds are considerably more reactive than benzenes, 3f,h and, as discussed under Regiochemistry, the sites of reduction are controlled by the distribution of electron density in the anionic intermediates. With the exception of compounds like naphthalene, triphenylene, and perylene, where all of the rings are equivalent, this selectivity also controls which ring is reduced. Substituents may exert some control over ring selectivity. However, in a system like anthracene, where the electron density is highly localized at the 9,10 positions, reduction generally occurs at that position regardless of the nature of substituent groups.

The application of classical Birch reduction procedures, including the Wilds and Nelson modification of adding the alcohol last, provides only marginal results with polynuclear aromatic compounds. 3f The addition of alcohols to metal ammonia solutions of polynuclear aromatics invariably leads to reduction

beyond the stage of the addition of two hydrogens. Mixture of products at varying stages of reduction and/or isomerization products are also common. For example, anthracene (**3**) affords primarily the hexahydro isomer by reduction with sodium/ammonia in the presence of an alcohol. (49) Colloidal iron may be used in a number of instances to prevent overreduction, and its presence during the reduction of anthracene restricts reduction beyond the dihydro stage. (50, 51) However, the same results can be obtained in minutes rather than hours by avoiding the alcohol altogether and simply quenching with stronger acids like ammonium chloride. **3**f,g Nonetheless, iron salts are useful in systems like phenanthrene where reducible dihydro derivatives **11** are produced in situ via protonation with ammonia. (**38**)

If alkyl halides are added to metal ammonia solutions of polynuclear aromatic compounds before the addition of a proton source, alkyl groups may be introduced into the reduced products. The number of alkyl groups introduced

depends on reaction conditions. 3g For example, anthracene provides mono-, di-, and trialkylated products under these conditions with *cis* and/or *trans*-39 predominating when the alkyl halide is added to the metal/ammonia solution. However, if the metal/ammonia solution is added to the alkyl halide (inverse quench), 38 is produced in 80–90% yield.

Naphthalene shows an unusual metal effect in that the use of sodium leads to >90% dialkylation whereas lithium provides >90% monoalkylation. (52) Once again, however, inverse quench leads to almost exclusive formation of the monoalkylated product. These effects, metal and addition order, are both due to a secondary reaction. As discussed above, many polynuclear aromatics produce monoanions as the persistent intermediate, and alkylation affords

monoalkylated dihydroaromatics (Eq. 8). However, protonation of the dianion by ammonia generates amide ion and so the monoalkylated product may be deprotonated and subsequently alkylated again (Eq. 9). Since sodium

$$ArH \longrightarrow ArH^{=} \xrightarrow{NH_3} ArH_2^{-} \xrightarrow{RX} ArH_2R$$
 (8)

$$ArH_2R \xrightarrow{NH_2} ArHR \xrightarrow{RX} ArHR_2$$
 (9)

amide is more soluble than lithium amide, multiple alkylations are more common when sodium is used for the reduction. Inverse quenching into a large excess of alkyl halide consumes anions and amide so rapidly that secondary reactions are prevented. Alternatively, one equivalent of *tert*-butyl alcohol can be added to destroy the amide as it is formed.

3.2. The Reduction of Aryl Ethers

In the absence of other activating substituents, anisoles are reduced to 1-methoxy-1,4-cyclohexadienes with the addition of hydrogen taking place at positions other than those occupied by the methoxy substituent (e.g., **40**). The resulting enol ethers tend to undergo rearomatization on standing, so

they are generally converted into the more stable ketones soon after preparation. This may be accomplished under mild conditions with oxalic acid in aqueous methanol, whereupon the double bond maintains its original position (41), or with hydrogen chloride to provide the conjugated ketone 42. This technique has wide application to the synthesis of steroids where the A ring is transformed into a \triangle ²-cyclohexenone. 3g,53–59

The reaction of 5-methoxytetralin (43) with sodium/ammonia in the presence of methanol gives only a trace of reduction products, while its isomer

45 is successfully transformed into the enone **46** under similar conditions. (80) The diminished reactivity of **43** results from the fact that the normal course of reduction requires protonation to occur at a site bearing an alkyl substituent. However, by adding an alcohol last according to the Wilds and Nelson modification, (4) ketone **44** is isolated in 63% yield with lithium providing significantly better results than sodium. Compounds **47** (81) and **48** (82) containing the 5-methoxytetralin moiety provide poor yields of the desired enones even with

large excesses of lithium. In contrast, the unusually high reactivity of **49** is understandable in terms of an intramolecular protonation process (see above).

An important limitation in the reduction of aromatic ethers is the occasional partial or complete loss of the alkoxy group. This is especially true when the alkoxy group is *para* to an activating substituent. Both **50** (83) and **51** (84) are reduced exclusively 1,4 to the carbonyl substituent with complete loss of the methoxy group. The replacement of methoxy with larger groups (85) is only modestly successful in increasing oxygen retention as demonstrated with 12-methoxy and 12-isopropoxypodocarpe-8,11,13-trien-19-ol (**52**). (86)

The Birch reduction of aryl silyl ethers has considerable synthetic utility. Although poor results are obtained with trimethylsilyl, *tert*-butyldimethylsilyl and isopropyldimethylsilyl phenyl ethers give good yields (80–97%) of 1-4-dihydroaryl silyl ethers **53**. (87) Further treatment of **54**, for example, with

R = H, o-, m-, p-Me, o-, m-, p-OMe

R' = i-Pr, t-Bu

tetrabutylammonium fluoride gives the relatively inaccessible β , γ -unsaturated ketone 55, and titanium-mediated acylation provides cyclohexadiene 56.

3.2.1.1. Alkylation of Dihydroaryl Alkyl Ethers

The reduction products of aryl ethers can serve as useful starting materials for synthesis. 1-Methoxy-1,4-cyclohexadienes **57** are deprotonated by potassium amide in ammonia at the allylic position next to the oxygen. (**88**, **89**) The resulting anion is alkylated in yields of 75–85% with butyl, pentyl, or hexyl bromides, or arylated in 50–60%

yield with bromobenzene. (89) This method provides a basis for the synthesis of olopanone (58), (90) (Z)-heneicosa-6-ene-11-one (59) (89) (the male sex attractant of the Douglas fir Tussock moth), and pregn-4-en-20-one (60). (91) A related process is used for the synthesis of the alkaloid secodaphrinphylline (61). (92) The protected ether derived from the Birch reduction of *m*-cresol is lithiated and then carboxylated followed by methylation of the acid and hydrolysis of the ether to produce 2-carbomethoxy-3-methylcyclohexenone. Subsequent Diels–Alder reaction with the *tert*-butyldimethylsilyl enol ether derived from 1-acetylcyclopentene leads to a tricyclic keto ester that provides the necessary carbocyclic skeleton for the synthesis of 61. With 62, where deprotonation of the methyl ether fails, the diethylaminoethyl ether reacts with *n*-butyllithium in hexamethylphosphoric triamide (HMPA), followed by addition of alkyl halide and hydrolysis, to produce

2-alkyl-3-methylcyclohex-2-en-1-ones 63. (93, 94)

RX	
$CH_2 = CH(CH_2)_2Br$	(86%)
$CH_2 = CHCH_2Br$	(88%)
$\textit{m}\text{-}MeOC_{6}H_{4}(CH_{2})_{2}CH = CH(CH_{2})_{2}Br$	(85%)
p-MeOC ₆ H ₄ (CH ₂) ₂ CH = CH(CH ₂) ₂ Br	(89%)
<i>p</i> -MeOC ₆ H ₄ (CH ₂) ₂ Br	(78%)
$MeCCI = CH(CH_2)_2CI$	(80%)

3.2.1.2. Cycloadditions

1-Methoxy-1,4-cyclohexadienes can be used as substrates in cycloadditions where prior isomerization to the conjugated isomer is accomplished in situ. This reaction is accelerated by catalysts, as illustrated by the reaction of 1-methoxy-1,4-cyclohexadiene (64) with acrylonitrile in the presence of dichloromaleic anhydride (DCMA) to afford adduct 65 in 75%

yield. (95) Under similar conditions, but in the absence of dichloromaleic anhydride, only unreacted 64 is recovered. Aluminum chloride and p-toluenesulfonic acid are also effective catalysts. (96)

 α -Chloroacrylonitrile can also be used with complete (>99.9%) regioselectivity to produce adduct 67, which can be converted into the bicyclic ketone

68 in over 80% yield. (97) Ketone **68** serves as a precursor to *cis*-decalin-2,6-diones **69**, (98) which can be used in the total synthesis of the lycopcodium alkaloid luciduline (**70**). (99) Rearrangement of ketone **71**, available from 6-methoxy-1,2,3,4,7,8-hexahydronaphthalene and a ketene equivalent, ultimately furnishes **72**, a model of the veatchine group of diterpene alkaloids. (100)

3.3. The Reduction and Reductive Alkylation of Aromatic Ketones

The Birch reduction of aromatic ketones is complicated by the fact that carbonyl reduction may take place in addition to, or in place of, aromatic ring reduction. Acetophenone reacts with potassium/ammonia in the presence of *tert*-butyl alcohol to give ethylbenzene. (101) Similarly, α -tetralone (73) affords

tetralin with lithium/ammonia reduction, but alcohol **75** is produced when sodium benzoate is used as a quenching agent. (102) Evidently additional reduction

may occur during the quenching process even when relatively acidic agents like ammonium chloride are used. The reduction of α -tetralone is also quite sensitive to the order of addition of reagents, the metal employed, and the temperature. (103) With sodium added last, the nuclear reduction product **76** is produced in 30% yield together with **74** (12%) and **75** (49%). However, the use of lithium and lower temperatures (–78°) results in a considerable amount (54–84%) of dimerization (**77**), affording a mixture of **77a**, **77b**, and **77c**.

Overall reductive alkylation may be accomplished with acetophenones **78** by reduction to produce an enolate **79** which is subsequently alkylated. (83) This is best accomplished by initial reduction with potassium followed by exchange of the cation with lithium bromide prior to the alkylation step. Additional

improvements include adding the alkylating agent in aqueous tetrahydrofuran (1:1) at -78° to buffer the system and suppress dialkylation. (104) Similarly, 1-tetralones (81) (83, 104, 105) and 1-indanones (82), (106-108) including a number of methoxy derivatives, undergo reductive alkylation with R' = methyl, ethyl, allyl, and benzyl halides.

Reduction of 1-acetylnaphthalene (109-113) leads to the dienolate **83**, which can be alkylated with methyl or *n*-amyl iodide (109, 111) to produce **84**. On the other hand, protonation by ethanol affords the conjugated product **85**. (110, 111)

This is likely a rearrangement product since the reverse quench of 83 into aqueous ammonium chloride yields 84 (R = H). (113)

1-Keto-1,2,3,4-tetrahydrophenanthrenes **86**, (112, 114, 115) as well as A/B aromatic 11-keto steroids, (115, 116) react similarly to provide conjugated reduction products or nonconjugated, methylated reduction products.

In contrast to the 1-isomer, the reduction of 2-acetylnaphthalene is more difficult to control. Both lithium and sodium reduction lead to tetrahydro

products with some reduction of the carbonyl group. However, the use of potassium for reduction, or lithium/ferric chloride for reductive methylation, affords the dihydro products **87** and **88** respectively. (111) Curiously neither the

use of potassium nor ferric chloride limits the reduction of **89**, which yields the tetrahydro product **90**. (112) Preference for *cis*-fused B/C rings in the latter is presumably a consequence of protonation of the enolate from the sterically

less hindered equatorial side. Alkylation of the lithium enolate derived from 89 affords a mixture of *cis*- and *trans*-fused hexahydro isomers, and the use of sodium or potassium leads to a considerable amount of dialkylation.

Carbonyl groups may be protected during reduction by conversion into acetals, and a variety of *p*-anisaldehyde and *p*-methoxyacetophenone acetals and ketals **91** can be reduced to the 2,5-dihydro compounds in 30–80%

yields. (117) *p*-lsopropylbenzaldehyde can also be protected as the $N,N\phi$ -dimethylimidazoline (92) in an analogous transformation. (118)

3.4. The Reduction of Aromatic Carboxylic Acids

3.4.1.1. Benzoic Acids

The carboxy group generally dominates regiochemistry, and is strongly activating in the Birch reduction. **3**f,**119** However, while classical reduction conditions produce good results with benzoic and *o*-toluic acids,

affording 1,4-dihydrobenzoic acids, (119-121) p-toluic acid (93, R = Me) gives mainly the tetrahydrotoluic acid under similar conditions. (120) With low levels of an alcohol, or in its absence together with short reaction periods followed by ammonium chloride quench, both 4-isopropyl and 4-*tert*-butylbenzoic acids

can be reduced efficiently to the 1,4-dihydro products. The former has a *cis/trans* ratio of 1:2 (122) while the latter gives only the trans isomer. (33) *m*-Alkylbenzoic

acids show similar behavior and are best reduced with water or ammonium chloride as the proton donor if 1,4-dihydro products are desired. (123) On the other hand, o-alkylbenzoic acids give mainly 1,4-dihydrobenzoates irrespective of the experimental procedure. In the absence of proton donors, the intermediate dianion 94 persists in solution and can be trapped with alkyl halides, (123) α , β -unsaturated esters, (124) epoxides, (125) or formaldehyde (126) to give a variety of synthetically useful products. The use of alcohols may serve as a

convenient method when conjugated products are desired, however, as illustrated in the synthesis of the tetrahydroindane carboxylic acid **95**. (127)

The loss of alkoxy and amino groups in benzoic acids by hydrogenolysis is common especially when they are in the *para* position. For example, the

reduction of the trimethyl ether of gallic acid (96) leads to complete loss of the *p*-methoxy group but retention of those *meta* to the carboxy group. (120) *m*-Anisic acid is reduced smoothly with complete retention of the methoxy group. However, overreduction to the tetrahydro stage occurs with ethanol, and to a lesser extent with methanol, as the proton donor. This problem is corrected by reduction in the absence of an alcohol followed by the addition of ammonium chloride. (120, 128-130)

The loss of substituents can also be a problem with *o*-methoxybenzoic acids, especially when lithium is used in refluxing ammonia. (131) Some improvements involve the use of sodium instead of lithium, and the use of methanol as a proton donor. 132–133 A more general procedure, which also facilitates alkylation, involves the addition of potassium *tert*-butoxide prior to reduction by potassium metal in the presence of up to four equivalents of *tert*-butyl alcohol.

In this way 2-methoxy-6-methylbenzoic acid (98) can be reductively alkylated with methyl, benzyl, and 4-(1-butenyl) halides. Hydrolysis of the enol ethers leads to decarboxylation with production of cyclohexenones 99. (134) In some

instances, it may be desirable to generate the lithium salt prior to alkylation, and such exchange is accomplished by the addition of lithium bromide. The reductive alkylation of 2-methoxybenzoic acids serves as the starting point for a number of total syntheses as illustrated for the sesquiterpenen **101**. (135) The reductive alkylation products of alkyl and alkoxybenzoic acids **102** can also undergo oxidative decarboxylation with lead tetraacetate, (136) or electrochemically, (137) to produce aromatic hydrocarbons and ethers in good yields.

3.4.1.2. Polycyclic Aromatic Carboxylic Acids

The reduction of polycyclic aromatic carboxylic acids is especially easy when the carboxy group is located on a carbon that corresponds to a position of high electron density in the radical anion/dianion of the parent hydrocarbon. If the carboxy group is positioned at a site of low electron density relative to the parent hydrocarbon, however, reduction is often hard to control with respect to overreduction and/or isomerization.

Conditions that give good results with benzoic acids, like the use of excess metal and the presence of an alcohol as a proton donor, often provide poor results with polycyclic aromatic carboxylic acids. For example, 1-naphthoic acid (103) provides substantial amounts of the 3,4-dihydro isomer 105 when reduced in the presence of an alcohol, 2a,138 but 1,4-dihydro-1-naphthoic acid

(104) becomes the exclusive product when ammonium chloride is used as the proton source. (84, 139) In contrast to the *trans* predominance observed for

4-substituted benzoic acids, 5-acenaphthoic acid gives the *cis* isomer **106**. (140) This result is presumably due to the added constraint provided by the fivemembered ring. The reduction of 2-naphthoic acids is more difficult to control. (84, 141-144) However, the use of ferric chloride during the reduction leads to yields of ca. 75% for both reduction (**107**) and reductive methylation (**108**). (84) Interestingly, different regiochemistry is observed for these two processes.

Reaction conditions are quite important in the reduction of biphenyl-4-carboxylic acid. (145, 146) However, with rapid quenching techniques, two products **109** (stereochemistry unknown) and **110** can be obtained in a ratio of 3:1

respectively. (146) In contrast, the *ortho* isomer provides a single product **111** with reduction being controlled by the carboxylic acid group. (145)

3.5. The Reduction of Aromatic Carboxylic Esters

The Birch reduction of aromatic esters is problematic in that carbonyl reduction is expected to be competitive with ring reduction (i.e., the Bouveault–Blanc procedure). However, if one or two equivalents of water, or *tert*-butyl alcohol, is added before metal addition, benzoate esters may be

reduced in over 95% yield with sodium in ammonia, although yields are poor when 4-alkyl substituents are present or methyl esters are used. (147) However, if *tert*-butyl alcohol is used with lithium or potassium as the metal, good results are obtained with methyl benzoate. 3j This method, with potassium, also works well with reductive alkylation as illustrated for the *o*-methoxybenzoate ester

112. (134, 148) Yields are in the range 60–95% even in the presence of a 4-methyl substituent. However, in some cases it is necessary to convert the potassium enolate into the lithium enolate prior to the alkylation step, and with especially

active alkylating agents the ammonia must be removed first. 3j It is possible to carry out the alkylation step separately on the dihydrobenzoate (e.g., 113) by deprotonation with lithium N,N-diisopropylamide (LDA) followed by alkylation. (149) The reductive alkylation of o-methoxybenzoate esters provides

considerable opportunity for further synthetic elaboration as illustrated in the synthesis of juncunol (114), (133) (\pm)-longifolene (115), (150) and the tricyclic ketone 116. (151) Similarly, conjugated dienes like 117 may be produced that serve as substrates for Diels–Alder reactions. (152)

In general, esters may serve as excellent alternatives to the parent carboxylic acids for Birch reduction, especially reductive alkylation. They are more

soluble; more resistant to isomerization, rearomatization, and decarboxylation; and are more easily isolated. They may also show improved regioselectivity,

as illustrated for reduction of ester **118**. The parent acid is reduced in both rings with the disubstituted ring favored by a 3:1 ratio whereas the ester gives **119** exclusively. (146)

3.6. The Reduction of Aromatic Amides

The reduction of aromatic amides is quite sensitive to conditions and can produce considerable amounts of benzaldehyde as well as dimeric products. (120, 152-157)

Best results are obtained when potassium is used in the presence of one equivalent of *tert*-butyl alcohol, and the resulting monoanion can be protonated or alkylated (**120**). (**157**)

3.6.1.1. Enantioselective Reductive Alkylation of Aromatic Amides

The incorporation of L-proline as a chiral auxiliary in **121–123** allows reductive alkylations with high diastereoselectivities (39, 158-164) although the sense of stereoselection in **121** is opposite to that in **122**. (159) Birch reduction of **121**, where

 R^1 = OMe and R^2 = CH₂OMe, followed by alkylation with methyl iodide at -78° gives diastereomeric α -methylated dihydroaromatic products in a 260:1 ratio. (39) Amide 122, where $R^1 = R^2 = R^3 = H$, is less selective than 121 in methylation with a ratio of 85:15, but selectivity increases to 99:1 when ethyl iodide is used as the alkylating agent. This method can be used as a starting point for total synthesis as, for example, 122 in the enantiospecific preparation of (–)-longifolene (115). (150)

3.7. The Reduction of Phenols

Phenols are rather unreactive under Birch reduction conditions since the addition of an electron to a phenoxide produces a radical dianion. In polynuclear aromatics such as **124**, the aromatic ring bearing the hydroxy group is often not reduced. (165) The reduction of phenolic rings is best accomplished with high concentrations of lithium. The yield of **127** is increased from 46% to 76% by increasing the lithium concentration from 3.4 M to 4.3 M. (166) An exception to this lack of reactivity is 2-naphthol and its derivatives. 2a Increased

reactivity may be due to reduction occurring via the tautomeric α , β -unsaturated keto form.

3.8. The Reduction of Aromatic Amines

Aromatic amines undergo transformations analogous to anisoles in that the final products are ordinarily ketones and unsaturated ketones. (167, 168) In contrast to anisoles, however, the initial reduction products are usually not isolated with aryl amines, and overreduction is common. However, *N*-aryl-morpholine

derivatives provide an important exception in that the primary reduction product is isolable. As illustrated for **128**, the products are generally conjugated cyclohexadienamines, although nonconjugated products are formed when there are substituents *ortho* to the nitrogen. (169)

3.9. The Reduction of Arylsilanes

Carbanions are stabilized by an α -silyl substituent, (170) and consequently arylsilanes are reduced to provide allylic silanes in the absence of more strongly activating substituents. (171) Since allylic silyl groups are easily removed by fluoride ion, silyl substitution represents a way of controlling regiochemistry in the Birch reduction. (172-174) For example 1-methylnaphthalene (130,

R = H) is reduced in the unmethylated ring to produce 5-methyl-1,4-dihydronaphthalene (131). However with a 4-trimethylsilyl substituent at C-4 (130, $R = SiMe_3$), reduction occurs exclusively in the substituted ring to produce 132. Subsequent removal of silicon by treatment with tetrabutylammonium fluoride (TBAF) affords 1-methyl-1,4-dihydronaphthalene in 80% overall yield. (172) The equivalent of overall reductive alkylation can also be accomplished by removal of the trimethylsilyl group in the presence of methyl or ethyl iodide. For example, the phenanthrene 133 is reduced to the benzylic silane 134, which, in turn, can be treated with tetrabutylammonium fluoride in the presence of primary alkyl halides to produce the *trans*-9,10-dihydro derivative **135**. (173) This is especially significant since reduction of 9,10-dialkylphenanthrenes produces the *cis* isomers. Anthracenes and naphthalenes can also be alkylated in this way, and the products exhibit the same stereochemistry that they show during normal reductive alkylation in the absence of a silyl group. This result indicates that additional stereoselectivity by the replacement of silicon with RX is not possible and that the intermediate resulting from treatment with tetrabutylammonium fluoride is the carbanion and not a tight complex. (174) Silvl substitution can also be used to prevent cleavage of

substituents that might otherwise be lost during reduction. For example, although fluorobenzene is rapidly converted into benzene and on to 1,4-cyclohexadiene under Birch reduction conditions, *m*-trimethylsilylfluorobenzene

(136) is reduced with the fluorine retained. Subsequent removal of the silicon by tetrabutylammonium fluoride affords 1-fluoro-1,4-cyclohexadiene (138), which is not otherwise accessible by Birch reduction methods. (175)

3.10. Bond Cleavage and Dimerization

Dissolving metal reduction is sometimes accompanied by processes that alter the nature of the original ring system. Two such side reactions are bond cleavage and dimerization. As mentioned above, the cleavage of carbon–oxygen bonds is quite common in aryl ethers, and may become a major pathway. (176) This is especially true for alkali metal reduction in solvents other than ammonia. (177-185) Carbon–carbon bond cleavage is also possible with 1,2-diarylethanes

and diarylmethanes. [2.2]-Paracyclophane (**139**) undergoes cleavage of the ethane bond during lithium/ammonia reduction, (**186**) and the 1,2-benztriptycene (**140**) ring opens to give

10-lithio-9-(2-naphthyl)-9,10-dihydroanthracene. (187) On the other hand, the isomeric 2,3-benztriptycene (141) does not ring open under similar conditions. (187) The competition between Birch reduction and bond cleavage in 1,2-bis(4-methyl-1-naphthyl)ethane (142) is

142

quite sensitive to conditions, with cleavage increasing relative to reduction in the series Li < Na < K and NH₃ < THF < HMPA. (188) It is quite significant, however, that reduction becomes the almost exclusive pathway at temperatures below -33° regardless of metal or solvent. Since this is the highest operating temperature for ammonia, effects that appear to be solvent related may in fact be more attributable to temperature.

Dimeric and oligomeric products may also result from the reduction reaction,
and in some cases this represents a major pathway. For example, fluoranthene (143) reacts with either sodium or lithium in ammonia to give

the dimer **144** in 30–52% yield together with polymeric material. (189) Similarly, the reduction of naphthalene can produce substantial amounts of dimer and trimer, especially with prolonged reaction times. (190) These processes do not involve dimerization of radical anions, as might be expected, but rather result from monoanion addition to neutral alkenyl aromatics. (189, 190)

3.11. Comparison with Other Methods

3.11.1.1. Benkeser Reduction

The use of lithium in primary amines, ethylenediamine, or mixtures of primary and secondary amines serves as an alternative to the classic Birch reduction procedure. Known as the Benkeser reduction, this system provides a more powerful reducing medium than metals in ammonia. (191) For example, whereas benzene gives 1,4-cyclohexadiene by Birch reduction, treatment with lithium in ethylamine provides mainly cyclohexene plus some cyclohexane. (192) Similarly, naphthalene, which under suitable metal ammonia reduction conditions affords 1,4-dihydronaphthalene almost quantitatively, (11) gives the octahydro products 145 and 146 in equal amounts by reduction with lithium in ethylamine. (192) When the solvent is changed to a mixture of ethylamine and methylamine, the selectivity (193) increases with 145 as the major product (80%). With ethylenediamine, reduction proceeds even further to produce decalin (147). (194) Polynuclear aromatic compounds normally

undergo reduction beyond the dihydro stage with lithium–amine systems and often yield a mixture of products. Reduction of these compounds beyond the addition of two hydrogens must result from protonation of the anionic intermediates by the amines. However, this need not suggest greater acidity in this medium as compared with ammonia, but probably results from the higher temperatures normally employed. The conjugation of dienes by the lithium salts of amines is well known. (195) In any event, Benkeser reduction does not serve as a substitute for the Birch reduction, but may be the method of choice when more highly reduced materials are desired or for the reduction of isolated double bonds.

The use of calcium in low-molecular-weight amines sometimes provides cleaner results than lithium. For example, the dienes **148** and **149** can be

obtained by calcium–methylamine–ethylenediamine reduction of durene and anthracene respectively. (196) The addition of *tert*-butyl alcohol to such systems, however, gives products similar to those of the Birch reduction in a number of cases. For example, anisole and the isomeric xylenes are all reduced to the expected 1,4-cyclohexadienes with calcium/amines/*tert*-butyl alcohol with yields in the 75–90% range. (197)

3.11.1.2. Reduction in other Solvents

Electron addition to aromatics and other unsaturated cyclic compounds can also be accomplished by the use of alkali metals in solvents other than ammonia or amines, most notably tetrahydrofuran and HMPA. (198) This procedure seldom offers any advantage over metal/ammonia procedures, since reactions in these solvents are often quite slow. However, in the absence of ammonia or an alcohol as a proton source, the intermediates are radical anions or dianions, and alkylations may be possible that cannot be achieved in the presence of ammonia. Alloys such as Cs/K/Na in tetrahydrofuran reduce benzene, toluene, and xylene, generally producing tetrahydrobiphenyls as the major products. (199) Crown ethers enhance the solubility of alkali metals in tetrahydrofuran, (200) and the system sodium–potassium alloy/18-crown-6/tetrahydrofuran has been used for the reduction of benzoic acid and anthracene. (201, 202) The addition of sodium metal to polynuclear aromatics in a refluxing alcohol also represents a method for ring reduction, but it is not expected to have much general utility. (203)

3.11.1.3. Reductive Silylation

Benzene (204, 205) and its alkyl, (205) methoxy, (206, 207) and hydroxy derivatives (207) react with lithium in tetrahydrofuran in the presence of chlorotrimethylsilane to produce 3,6-bis(trimethylsilyl)-1,4-cyclohexadienes. This process, which may require extended reaction periods of a number

of days, can be accelerated by sonication as demonstrated for the reductive silylation of phenol. (207) 1,4-Cyclohexadiene, free of its conjugated isomer, can be prepared by the reductive silylation of benzene followed by silicon removal with aqueous potassium hydroxide in carbitol. (208) Rearomatization, affording an overall route to silylated aromatics, is also quite facile. For example, this

methodology can be used for the preparation of the silylated indole **150** with further conversion to the acyl derivative **151** by *ipso* Friedel–Crafts acylation. (209)

Naphthalene undergoes reductive silylation with sodium in tetrahydrofuran to provide both 1,2- and 1,4-dihydro isomers **152** and **153**, (210) whereas the use of potassium leads to a tetrasilylated compound. (211) With lithium/tetrahydrofuran (212)

or magnesium/HMPA, (213) silylation proceeds further to give **154**, which can be rearomatized with the loss of two silyl groups to provide

1,4,6,7-tetrakis(trimethylsilyl)-1,2,3,4-tetrahydronaphthalene, providing a source of tetrafunctional naphthalenes by subsequent electrophilic substitution on silicon.

3.11.1.4. Electrochemical Reductions

Reactions similar to the Birch reduction can also be performed electrochemically. (214, 215) Benzene is reduced by electrochemical reduction using lithium chloride as the electrolyte to provide 1,4-cyclohexadiene in an undivided cell, but cyclohexene in a divided cell. (191, 216) The latter result is presumably due to the presence of lithium dimethylamide,

formed in the divided cell, that causes isomerization and further reduction of the initial product. Ethyl, isopropyl, and *tert*-butylbenzene can be similarly reduced producing 1-alkyl-1,4-cyclohexadienes in yields of 75–96% in the undivided cell.

Efficient preparative electroreductions can be performed at mercury pool cathodes in solutions containing tetraalkylammonium electrolytes with a variety of solvents including acetonitrile, *N*,*N*-dimethylformamide (DMF), alcohols, ethers, sulfolane, and HMPA. (215) The use of aqueous solutions can

also produce interesting results. For example, diphenyl ether (**155**) is reduced to phenol and benzene by either Birch reduction or electrochemical reduction in dry *N-N*-dimethylformamide. However, with cathodic reduction in aqueous tetrahydrofuran, **156** and **157** are produced in combined yields of over 50%. (217)

Another interesting example is estrone 3-methyl ether (158) since it cannot be satisfactorily reduced by Birch reduction. By varying the current, the carbonyl and the aromatic ring can be selectively reduced producing either 159 or 160 in yields of over 80%. (218)

Polynuclear aromatic hydrocarbons can also be reduced electrochemically; in some instances results are quite comparable to Birch reduction and in others they are not. For example, preparative electrolysis of anthracene provides 9,10-dihydroanthracene in 90% yield. However, phenanthrene gives a mixture of dihydro, octahydro, and decahydro derivatives. (215)

3.11.1.5. Catalytic Hydrogenation

Although aromatic rings can be reduced by catalytic hydrogenation, reduction normally proceeds far beyond the stage of dissolving metal reduction. (219) Thus while a useful procedure, catalytic hydrogenation

does not usually serve as an alternative to Birch reduction. Hydrogenation is often unpredictable and difficult to control. Either heterogeneous or homogeneous catalysts can be used, but in both cases the usual products from the hydrogenation of benzene derivatives are cyclohexanes. However, this method can be applied to polynuclear aromatics with exceptionally good results in some instances. For example, benz[a]anthracene (161) can be hydrogenated under mild conditions (20–50 psig, ambient temperature) to

provide **162** in 97% yield when palladium on charcoal is used as the catalyst, and **163** in 95% yield using a platinum catalyst at slightly higher hydrogen pressures. (220)

4. Experimental Conditions

4.1. Liquid Ammonia

Anhydrous ammonia is a toxic gas with a pungent odor, and all operations must be conducted in an efficient fume hood. Liquid anhydrous ammonia is available commercially in steel cylinders, and it can be removed in either liquid or gaseous form. However, ammonia from steel cylinders is often contaminated with iron, thereby providing a catalyst for the formation of alkali metal amides. This problem is especially important when sodium or potassium is employed, or when prolonged reaction times are necessary, and has led to the practice of double distillation – ammonia is removed as a gas and condensed into a preliminary vessel where it is dried with sodium until a blue color persists. It is then distilled into the reaction vessel. A simpler method is to pass the ammonia through a drying tube containing barium oxide (10–20 mesh).

Liquid ammonia has a boiling point of -33.4° , and an efficient condenser is required. A Dewar condenser containing a slurry of dry ice in isopropyl alcohol will normally suffice. A positive pressure of inert gas is also required, and argon or helium are preferred since nitrogen reacts with lithium metal.

4.2. Metals

The metals most frequently employed for Birch reduction are sodium, lithium, potassium, and, to a lesser extent, calcium and magnesium. Lithium is the most reactive, and also the most soluble in ammonia. Coupled with the fact that lithium is also less sensitive than sodium or potassium to iron-catalyzed reaction with ammonia, it is often the metal of choice. Lithium amide is also less soluble than either sodium or potassium amide, and this can reduce the amount of secondary isomerization products. With polynuclear compounds, however, the greater tendency for lithium salts to be protonated by ammonia can lead to overreduction, and sodium sometimes gives the best results.

Although alkali metals are quite soluble in ammonia ultimately producing so-called "metallic" or "bronz" phases, Birch reductions are most often done under dilute conditions. Ranges of 0.1–0.5 g metal per 100 mL of ammonia are common, and scaling up, when it includes more concentrated metal solutions, sometimes results in lower yields. Hence the ramifications of highly concentrated solutions of alkali metals in amine and ether solvents remain unclear. (221)

4.3. Cosolvents and Proton Donors

Cosolvents are often added to aid solubility. They are usually ethers, with diethyl ether, tetrahydrofuran, and glymes being the most common. However, since the anionic intermediates, as well as the products, are often more

soluble than the starting materials, only slight solubilization is necessary. Product outcome is occasionally affected by the nature of the cosolvent, but this may be more a function of ion pairing than solubilization. In any event, the routine use of diethyl ether or tetrahydrofuran in a ratio ranging from 1:3 to 1:2 relative to excess ammonia is probably prudent.

It is sometimes necessary to add acidic substances that may serve as proton sources. Generally, alcohols like ethanol and *tert*-butyl alcohol are employed for this purpose although occasionally stronger acids like water may be employed. The most serious problem normally comes about when a proton source is added where it is not required. This is true for almost all polynuclear aromatics as well as for a number of activated benzenes.

4.4. Reaction Procedures

The purity of starting materials remains a question. Carefully purified ammonia, cosolvents, proton donors, and aromatic substrates are sometimes critical. On the other hand, commercial anthracene can be reduced almost quantitatively without purification, and with "wet" ether as a cosolvent. As a general rule, the reduction of highly reactive substrates with short reaction times and rapid quenching (e.g., ammonium chloride) will not be overly sensitive to these considerations. Nonetheless, routine purification of materials is recommended. Commercial anhydrous tetrahydrofuran can be further dried by distillation from sodium benzophenone ketyl. Metals should be freshly cut under oil with their surfaces scraped clean, and then rinsed with petroleum ether. Additional details for the handling and purification of lithium, sodium, and potassium may be found in *Reagents for Organic Synthesis*. (222)

The order of addition can be quite important. There are several possibilities: the substance to be reduced dissolved in cosolvent containing an alcohol may be added to the ammonia already containing the metal, the alkali metal may be added last to the other reagents, or the alcohol may be added last. Of these methods, adding the metal last in small pieces is generally recommended.

The final quenching process is also important, and two general types of materials may be used: acidic materials like alcohols, water, or ammonium chloride, or electron-transfer agents like sodium benzoate or dienes followed by water. It is best to understand what is being accomplished in the final quench. This generally means one or more of the following possibilities: destroy excess metal, protonate anionic intermediates, and shift equilibria. If the quench is done slowly, as is the case with alcohols, metal is destroyed slowly and so excess metal during the quench can produce overreduction. A potential problem with electron-transfer reagents is that they can accept an electron from an anionic intermediate. This is not likely, however, except for dianions which are rare in ammonia. The addition of saturated ammonium chloride as fast as possible while keeping frothing under control is a good

general method. Where extreme sensitivity to overreduction during the quenching process exists, it is possible to pump the ammonia solution into dilute ammonium chloride (i.e., inverse quench).

Rapid workup is sometimes important, and allowing the quenched ammonia solution to stand for long periods to evaporate ammonia may be detrimental. When the amounts of ammonia are a few hundred mL or less, the quenched reaction mixture (no more violent frothing upon addition of water) may be poured into an excess of water (good hood) containing some ether, and then gently poured into a separatory funnel mounted on a ring stand (good hood, do not shake the funnel!). The water layer is then removed and more water is added to the separatory funnel *without shaking*. This water layer is drained off, and after two or three of these operations, the separatory funnel can be shaken without developing much pressure, and product isolation can proceed as usual.

For reductive alkylations, the alkylating agent in dry ether is added dropwise from a pressure equalizing dropping funnel. If reactive alkyl halides are added too quickly, violent evaporation of ammonia can result, and stoppers will be blown out.

4.5. Apparatus

Reactions are ordinarily conducted in a three-necked round-bottom flask with a sealed mechanical stirrer or equipped for magnetic stirring. In either case, glass or polyethylene stir blades or stir bars are preferred since Teflon darkens with repeated use in metal/ammonia solutions. The use of blackened stir bars does not seem to interfere with the reaction, however. The flask should be fitted with an inert gas inlet with a tee connection to a mercury bubbler and a Dewar condenser. If magnetic stirring is used, the third neck may be stoppered and used for the addition of reagents. With a flow of inert gas (stopper removed) the apparatus should be dried with a burner flame. After cooling, the Dewar condenser should be charged with dry ice/isopropyl alcohol, and the flask should also be cooled with a dry ice bath. Ammonia gas is then passed in through a drying tube containing 10–20 mesh barium oxide. Once the desired amount of ammonia is collected (usually estimated by premarking the flask), the bath can be removed if the reaction is to be run at reflux (ca. -33°), or otherwise remain if a lower temperature (ca. -78°) is desired. The aromatic substrate, dissolved in cosolvent, is then added via the stoppered neck. It may simply be poured in or added with a pressure equalizing addition funnel. The metal is added last in small pieces through the same inlet, and sometimes best results are obtained when this is done over a period of a few minutes.

5. Experimental Procedures

5.1.1.1. 1,2-Dimethyl-1,4-cyclohexadiene (Reduction of a Monocyclic Aromatic Hydrocarbon) (223)

To a flask containing 2.5 L of liquid ammonia were added slowly 450 g of anhydrous ether, 450 g (10 mol) of absolute ethanol, and 318.5 g (3.0 mol) of *o*-xylene in that order. Then 207 g (9.0 mol) of sodium was added in pieces over 5 hours. The ammonia was allowed to evaporate overnight, and 800 mL of ice water was slowly added with stirring. The organic layer was washed three times with 800-mL portions of water and dried over magnesium sulfate. Distillation through a 20-cm Vigreux column gave 250–300 g (77–92%) of a fraction boiling at 70–72° (48 mm).

5.1.1.2. 9,10-Dihydroanthracene (Reduction of a Polycyclic Aromatic Hydrocarbon) (224)

A solution of 0.36 g (2 mmol) of anthracene in 20 mL of tetrahydrofuran was added to 40 mL of anhydrous ammonia at -78° under an argon atmosphere. Lithium metal (35 mg, 5 mmol) was then added in pieces and the reaction mixture was stirred for 20 minutes. Saturated ammonium chloride solution was then added as quickly as possible to discharge the deep blue color. Ether (150 mL) was added, and washing, drying, and evaporation afforded pure 9,10-dihydroanthracene, mp 108°. The yield was essentially quantitative.

5.1.1.3. 7,12-Dihydrobenz[a]anthracene (The Use of Ferric Chloride to Control Reduction) (225)

A solution of benz[*a*]anthracene (1.14 g, 5 mmol) in 76 mL of dry tetrahydrofuran was added to 150 mL of anhydrous ammonia containing 40 mg of ferric chloride. Lithium wire (85 mg, 12 mmol) was added to the solution at reflux temperature, and after 2 hours the deep blue color was discharged by the addition of ethanol. After evaporation of the ammonia and dilution with water, the product was isolated by filtration. Dissolution in acetone, filtration, and removal of the solvent provided 7,12-dihydrobenz[*a*]anthracene (1.08 g, 70%, mp 111–112°).

5.1.1.4. 17 β -Hydroxy-16 β -methylestr-4-en-3-one (Conversion of an Anisole into a Cyclohexene-3-one) (42)

Anhydrous ammonia (300 mL) was added to 16 β

-methyl-3-methoxyestra-1,3,5(10)-trien-17 β -ol (1.2 g, 4.2 mmol) in ethanol (5 mL) and tetrahydrofuran (50 mL) at –50°, followed by lithium ribbon (2.3 g) in ca. 0.3-g portions over 2 hours with stirring. After stirring an additional 1 hour, ammonia was evaporated in a slow stream of nitrogen, and the residue was extracted with ether. The extracts were washed with water, dried over Na₂SO₄, and the solvent was evaporated to give crude crystals (1.13 g). To a stirred solution of this enol ether in methanol (25 mL) was added 6 M HCI (3 mL).

After stirring at room temperature for 30 minutes, the reaction mixture was extracted with ether. The extracts were washed with water, dried over Na₂SO₄, and the solvent was evaporated to give crude crystals. Recrystallization from ether–hexane (1:1) gave 17 β -hydroxy-16 β -methylestr-4-en-3-one (0.98 g, 85%) as colorless needles, mp 228–229°.

5.1.1.5. trans-3 α , β

-Methyl-3-(1-methoxyethoxymethoxyethyl)-2,3,3a,4,5,6,9,9b-octahydro-1H-be nz[e]inden-7(6H)-one (Conversion of an Anisole into a Cyclohexen-4-one) (226)

A solution of trans-7-methoxy-3 α , β

-methyl-3-(1-methoxyethoxymethoxyethyl)-2,3,3a,4,5,9a-hexahydro-1*H*-benz[e]indene (942 mg, 2.71 mmol) in 25 mL of dry tetrahydrofuran and 4 mL of ethanol was added to 65 mL of liquid ammonia at -78° . Lithium (128 mg, 18.3 mmol) was added and the mixture was stirred for 20 minutes. Ethanol (10 mL) was then added dropwise, and the solvent was evaporated. The residue was diluted with water (30 mL), extracted with ether, and then washed with saturated aqueous sodium chloride and evaporated. The residue was dissolved in ethanol (29 mL) and water (3 mL), and this solution was treated with oxalic acid (328 mg, 3.64 mmol) for 3 hours at room temperature. The mixture was neutralized with 10% aqueous sodium hydroxide and the solvent was evaporated. The residue was diluted with water (30 mL) and extracted with ether, and the extract was washed with saturated aqueous sodium chloride. The residue upon workup was chromatographed using hexane–ethyl acetate (4:1) to afford *trans*-3 α , β

-methyl-3-(1-methoxyethoxymethoxyethyl)-2,3,3a,4,5,6,9,9b-octahydro-1*H*-be nz[*e*]inden-7(6*H*)-one (838 mg, 92%) as an oil. ¹H NMR (CCI_4): δ 0.70 (s, 3H), 1.13 (d, 3H), 3.29 (s, 3H), 3.40–3.73 (m, 4H), 4.63 (d, 2H).

5.1.1.6. 2,4-Bis[(methoxycarbonyl)oxy]-17-(methoxycarbonyl)morphinan-6-on e (Reduction of a 1-Benzyldihydroisoquinoline followed by Cyclization of the Resulting Enol Ether) (227)

1-[3,5-Bis(benzyloxy)benzyl]-6-methoxy-3,4-dihydroisoquinoline hydrochloride (75 g, 0.15 mol), 850 mL of tetrahydrofuran, and 850 mL of *tert*-butyl alcohol were placed in a 5-L three-necked flask equipped with a dry ice condenser, a mechanical stirrer, and a stopper. Ammonia (2.2 L) was condensed in, and Li (11.5 g, 1.6 mol) was added in small pieces slowly until a blue color was obtained and maintained for 3 hours. Excess lithium was decomposed by addition of 75 mL of ethanol and ammonium chloride (200 g, large excess) and the ammonia was allowed to evaporate slowly overnight under a slight pressure of nitrogen. The residual solvents were evaporated and ether (1 L) and concentrated HCl (1 L) were added slowly with cooling. The reaction mixture was stirred initially at 25° and then in a bath at 50° for 24 hours. The reaction mixture was filtered, concentrated under reduced pressure to a volume of 1.5 L, and made just basic with KOH (initially solid and then 4 M aqueous solution). A solution of CICO₂CH₃ in CH₂Cl₂ was added slowly to the basic reaction mixture until the aqueous layer turned acidic. The mixture was extracted with methylene chloride (1 L). The aqueous layer was made alkaline with 2 M KOH, and it was again treated with CICO₂CH₃/CH₂Cl₂ until it became acidic. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined CH₂Cl₂ layers were stirred with anhydrous K₂CO₃ and CICO₂CH₃ at room temperature overnight. The reaction mixture was filtered, and the filtrate was extracted with saturated NaHCO₃, dried over Na₂SO₄, and concentrated to a brown oil (130 g). Purification by flash chromatography over silica gel [40–63 µm, 900 g, in CH₂Cl₂/CH₃CN (4:1)] gave 64.5 g (96%) of 2,4-bis[(methoxycarbonyl)oxy]-17-(methoxycarbonyl)morphinan-6-one as a pale yellow oil, which solidified on standing in the refrigerator. An analytical sample was obtained by recrystallization from *i*-PrOH: mp 133–135°.

5.1.1.7. 2-Methyl-2-cyclohexenone (Reduction of a 2-Alkylpyridine Followed by Hydrolysis and Aldol Condensation) (228)

2-Vinylpyridine (10.5 g, 0.1 mol) and absolute ethanol (36.8 g, 0.8 mol) in 300 mL of anhydrous ether was added quickly to a solution of lithium (3.45 g, 0.5 mol) in 1 L of ammonia. After disappearance of the blue color, the ammonia was evaporated in a stream of nitrogen, and the residue was dissolved in 480 mL of ethanol. A solution of sodium hydroxide (12.0 g) in 240 mL of water was then added, and the resulting system was stirred at room temperature under nitrogen for 2.5 hours. The solution was acidified by the addition of 10% HCl, and the resulting solution was extracted four times with 200-mL portions of ether. The combined ether layers were washed twice with saturated NaHCO₃, once with saturated brine, and then dried over anhydrous sodium sulfate. Evaporation of the solvent followed by distillation of the residue afforded 6.97 g (63%) of 2-methyl-2-cyclohexenone, bp $61-62^{\circ}$ (10 mm).

5.1.1.8. 2-(Phenoxyethyl)-4-isopropylcyclohexenone (Reductive Alkylation of an Anisic Acid Followed by Hydrolysis) (135)

Ammonia (400 mL) was distilled into a solution of

2-methoxy-5-isopropylbenzoic acid (19.5 g, 0.1 mol) in 100 mL of tetrahydrofuran at -78° . Lithium was added in pieces until a deep blue color persisted. β -Bromophenetole (110 mmol, 22.1 g) in 50 mL of tetrahydrofuran with 1 mL of dibromoethane was added immediately in one portion, and after stirring briefly, the cooling bath was removed allowing the ammonia to evaporate under a stream of nitrogen. 1,2-Dichloroethane (100 mL) and water (100 mL) were then added, and the two-phase mixture was refluxed for 2 hours. The organic layer was separated and the aqueous layer extracted twice with methylene chloride. The combined organic phase was dried over K₂CO₃, concentrated in vacuo, and distilled through a short-path apparatus to give 14.2 g (55%) of 2-(phenoxyethyl)-4-isopropylcyclohexenone as a colorless oil, bp 155–170° (0.4 mm).

5.1.1.9. 1-Acetyl-1-methylcyclohexa-2,5-diene (Reductive Alkylation of a Monoaromatic Ketone. Exchange of the Potassium Counterion of the Enolate for Lithium Prior to Alkylation) (83)

A solution of acetophenone (5.2 g, 43 mmol) and *tert*-butyl alcohol (52 mmol) in 20 mL of tetrahydrofuran was added to 140 mL of anhydrous ammonia at -78° . Potassium (3.7 g, 95 mmol) was added in pieces over 1–5 minutes, and stirring was continued for an additional 10 minutes. Anhydrous lithium bromide (95 mmol) was then added, and the mixture was stirred at -78° for 40 minutes. The ammonia was then evaporated over several hours and the resulting paste was methylated by the addition of methyl iodide (13.5 g, 95 mmol) with stirring at 0–10° for 40 minutes. Salt solution was added followed by extraction with ether. Further washing followed by drying over sodium sulfate, evaporation, and distillation, gave pure 1-acetyl-1-methylcyclohexa-2,5-diene (4.8 g, 80%), bp 72.2° (18 mm).

5.1.1.10. 2-Methoxy-1-methylcyclohexa-2,5-diene-1-carboxylic Acid (Addition of Potassium tert-Butoxide prior to Reduction to Suppress Overreduction and Loss of a Methoxy Group) (134)

Potassium *tert*-butoxide (5.6 g, 0.05 mol) was added to a stirred solution of 2-methoxybenzoic acid (7.6 g, 0.05 mol) in dry tetrahydrofuran (50 mL), followed by *tert*-butyl alcohol (4.0 mL, 0.05 mol) and liquid ammonia. The mixture was cooled to -70° , and potassium metal (4.89 g, 0.125 mol) was added in small pieces until a deep blue color persisted for more than 5 minutes. The color was discharged by the addition of a drop of 1,3-pentadiene, then a solution of methyl iodide (15.5 mL, 0.25 mol) in tetrahydrofuran (50 mL) was added. The ammonia was removed in a stream of 3, and 200 mL of sodium chloride solution was added. The product was extracted with methylene chloride while the pH of the mixture was progressively reduced to 4 by the addition of 1 M HCl. Drying (Na₂SO₄), evaporation of solvent, and distillation gave 2-methoxy-1-methylcyclohexa-2,5-diene-1-carboxylic acid (4.6 g, 84%) as a homogeneous colorless gum. ¹H NMR: δ 1.24 (s, 3H), 2.80 (brs, 2H), 3.52 (s, 3H), 4.81 (t, 1H), 5.64–5.83 (m, 2H).

5.1.1.11. Ethyl 1,4-Dihydrobenzoate (Reduction of an Aromatic Carboxylic Acid Ester Containing 1.25 Equivalents of Water) (229)

Ethyl benzoate (7 g, 46 mmol) and water (1.2 mL, 69 mmol) were dissolved in 75 mL of tetrahydrofuran and added to 150 mL of anhydrous ammonia under inert gas at -78° . Sodium metal 2.67 g, 116 mmol) was then added in pieces and the reaction was stirred for 25 minutes. The mixture was then pumped through a glass tube into a large excess of NH₄Cl solution, and the product was separated by ether partition. Microdistillation afforded ethyl 1,4-dihydrobenzoate (64%) as a colorless oil: bp 54–56° (0.35 mm).

5.1.1.12. (2'S,

6R)-1-Methoxy-6-methyl-6-([2¢-(methoxymethyl)pyrrolidinyl]carbonyl)-1,4-cycl ohexadiene (Reductive Alkylation of a Chiral Benzamide) (39)

A solution of 1-([2*S*)-methoxymethylpyrrolidinyl]carbonyl)-2-methoxybenzene (0.25 g, 1.0 mmol) in dry tetrahydrofuran (5 mL) and *tert*-butyl alcohol (74 mg, 1.0 mmol) was cooled to -78° , and anhydrous ammonia (60 mL) was added to the reaction mixture. Potassium (86 mg, 2.2 mmol) was added to the stirred solution in small pieces. Methyl iodide (0.28 g, 2 mmol) was added, and resulting yellow solution was stirred for 1 hour at -78° . After addition of NH₄Cl (~0.5 g), the mixture was warmed slowly while the ammonia was removed with a stream of nitrogen. Brine (~20 mL) was added, and the mixture was extracted with chloroform (3 × 20 mL). The combined organic extracts were washed with 10% sodium thiosulfate (20 mL), water (20 mL), and brine (20 mL), and then dried over anhydrous magnesium sulfate. Evaporation of solvents provided the crude product as a 260:1 mixture of diastereomers (GC analysis). Flash chromatography (silica gel, ethyl acetate–hexane, 3:2) gave (2'S,

6R)-1-methoxy-6-methyl-6-[([2'-(methoxymethyl)pyrrolidinyl]carbonyl)]-1,4-cycl ohexadiene (0.23 g, 85%) as a colorless oil. ¹H NMR (CDCl₃): δ 1.42 (s, 3H), 1.68–2.00 (m, 4H), 2.73–3.01 (m, 2H), 3.22–3.38 (m, 5H), 3.53 (s, 3H), 3.60–3.68 (m, 2H), 4.32 (m, 1H), 4.67 (t, 1H), 5.53 (dt, 1H), 5.77 (m, 1H).

6. Tabular Survey

The computer search of *Chemical Abstracts* covers the literature to the end of 1988, although some later papers as well as those that appeared to mid-1989 have also been included. About 40 compounds reported in patents without indication of experimental condition are not included in the tables. Tables I to VII contain examples of reduction of aromatic compounds according to their functionality. A similar division is followed for Tables VIII to XII covering reductive alkylation reactions. All compounds which contain heteroatoms in a ring (not necessarily in the aromatic ring) are treated as aromatic heterocycles. Table XIII contains examples of reduction (or reductive alkylation) of aromatic amines, alcohols, acetals, phosphines, and nitriles which were sporadically reported in the literature. Within each table the compounds are listed according to increasing carbon atom numbers using the *Chemical Abstracts* convention. Carbon atom(s) and hydrogens of R in the ester group CO₂R as well as benzyl (OBn), methanesulfonyl (OMs), tetrahydropyranyl (OTHP), or acetyl (OAc) groups which undergo hydrolysis during reduction are not counted. The reaction condition columns include the type of metal (number given in parentheses represents molar equiv. of metal per 1 mol of aromatic reactant, if reported), solvent, reaction time, and temperature (°C) if provided in references. The reaction temperature is given only if it differs from the reflux temperature of ammonia (-33°). The notation M/ NH₃ indicates that the substrate was added to the metal-ammonia solution, while NH₃/M means that the metal was added last. In the quenching agent column, other reactants are also given that are required to convert the primary reduction product into the one actually isolated. Alkylating agents are listed according to increasing carbon atom numbers. Yields are given in parentheses and are based on that no yield information was reported. In some cases, yields have been calculated by the authors from the literature data. Numbers not in parentheses are the product ratios. When a reaction has been reported in more than one publication, the conditions producing the highest yields are given, and the reference to that paper is listed first.

The following abbreviations are used in the tables:

Ac	acetyl
Am	amyl
Bn	benzyl
Bu	butyl
DME	1,2-dimethoxyethane
DMF	N,N-dimethylformamide

DMSO	dimethyl sulfoxide
equiv	equivalent
Et	ethyl
HMPA	hexamethylphosphoric triamide
LDA	lithium diisopropylamide
М	metal
Me	methyl
MEM	methoxyethoxymethyl
Ms	methanesulfonyl
Ph	phenyl
Pr	propyl
THF	tetrahydrofuran
THP	tetrahydropyran-2-yl
TMEDA	N, N, N', N'-tetramethyl-ethylenediamine
Ts	<i>p</i> -toluenesulfonyl

Table I. Reduction of Aromatic Hydrocarbons

View PDF

Table II. Reduction of Aromatic Ethers

View PDF

Table III. Reduction of Aromatic Silanes

View PDF

Table IV. Reduction of Aromatic Ketones

View PDF

Table V. Reduction of Aromatic Carboxylic Acids and Derivatives

View PDF

Table VI. Reduction of Aromatic Heterocycles

View PDF

Table VII. Reduction of Bifunctional Aromatic Compounds

View PDF

Table VIII. Reductive Alkylation of Aromatic Hydrocarbons

View PDF

Table IX. Reductive Alkylation of Aromatic Ketones

View PDF

Table X. Reductive Alkylation of Aromatic Carboxylic Acids andDerivatives

View PDF

Table XI. Reductive Alkylation of Aromatic Heterocycles

View PDF

Table XII. Reductive Alkylation of Bifunctional Aromatic Compounds

View PDF

 Table XIII. Miscellaneous Reductions and Reductive Alkylation of

 Aromatic Compounds

View PDF

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
°•	NH3/Na, -45°	EiOH	(90)	230, 231
c ₇	NH3/Li(2.5), EtOH, Et2O	- (I + I + $(PhCH_2)$	232
\bigcirc	NH₃/Li(2), Ei2O	i-PrOH	(88*)	233, 234
c8	NH3∕Li (2.9), <i>i</i> -PrOH, THF, 2	NH4CI	(98)	235

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
CO ₂ H	NH3/Na, MeOH, 1.5 h		CO ₂ H ()	236
NH ₂ CO ₂ H	NH3/Li (4.3), T2O, EtOH, -50°, 15 min	МеОН	* CO_2H () * Denotes position of T	237
	NH3/Na (3), EtOH, Et ₂ O, 5 h, -78°	H ₂ O	(77-92)	223, 233
Δ	NH3/Li (6), Et2O	EtOH	(91.7*)	233

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
\bigtriangledown	NH3/Li (4), Et2O	EiOH	(95.9*)	233, 234
Et	NH3/Na (4), EtOH, Et2O	H ₂ O	Et (95*)	238, 233
OH	NH3/Na (3), EtOH, Et2O, 5 h, -78°	. (ОН ()	239
^{c,}	NH3/Na, MeOH	- (\mapsto	240

A. Monocyclic Aromatics

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs
CO ₂ H	NH3/Na, MeOH, -78°, 3 h	MeOH, NH4Cl	I II I:II = 6:4	241
X = Cl, I	NH3/Li (2.2), Et2O, -78°, 2 h	EtOH (Pr-n + Pr-n I II = 9:1	242
NH ₂ CO ₂ H	NH3/Na, MeOH, 1.5 h	NH4Cl	NH ₂ CO ₂ H	243

(—)

TABLE I. Reduction of Aromatic Hydrocarbons (Continued)

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
Pr- <i>i</i>	NH ₃ /Na (5), EtOH, Et ₂ O, 2.5 h	H ₂ O	Pr- <i>i</i> (92*)	238, 233
	NH3/Li (2), Et2O	EtOH	(80.3*) + starting material (14.9*)	233
СССОН	NH3/Li, 1-BuOH, THF, -45°, 5 h	NH4Cl	(89) OH	244
OH	Na/NH3, EtOH, Et ₂ O	"	(80)	245

TABLE I. Reduction of Aromatic Hydrocarbons (Continued)

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	Na/NH3, EtOH	H ₂ O		2a, 246
CMe ₂ CO ₂ H	NH3/Na, MeOH	NH4Cl	()	236
CHEtCO ₂ H			CHEtCO ₂ H ()	236
CO ₂ H	NH3/Li, EtOH		() CO ₂ H	247

A. Monocyclic Aromatics

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
SiMe ₃	NH3/Li (3.3), EtOH	H ₂ O	SiMe ₃ (68, 90*)	249
C11 CO2H	NH3/Li, 1 h	EtOH	CO ₂ H (ca 100)	250
	NH3/Na (5.6), MeOH	H ₂ O	(80)	251
	NH3/Li, 1 h	EtOH	NMe ₂ (94*)	250

A. Monocyclic Aromatics

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

ST

A. Monocyclic Aromatics

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

A. Monocyclic Aromatics

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
SiMe ₃	NH3/Li, EtOH, THF, 3 h	NH4Cl	SiMe ₃ (83)	252
C15 OLi	Li/NH3, 15 min	EtOH, NH4Cl	(94)	259
C16	NH3/Na, EtOH, THF, -78°, 2 h	-	(50)	263

60

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	NH3/Na, EtOH, THF, 2 h	H ₂ O	(93)	264, 265
$R^{1} R^{2} = H$	Li/NH3, <i>t-</i> BuOH, THF, 7 h	NH4Cl	A.	43, 266
$R^1 = OH, R^2 = H$	Li/NH3, t-BuOH, THF, 10 min		HO HHH (ca 100)	43, 266
$R^1 = OAc, R^2 = H$			" (ca 100)	43, 266

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
Даран Н	u		(ca 100) H	43
C17 (CH2)5	NH3⁄Li (10), 1-BuOH,THF, 2 h	NH4Cl	(CH ₂) ₅ ()	267
MeOH	Li (2) NH3, 7-BuOH, THF, 5 h		MeO H (4*)	43

62

A. Monocyclic Aromatics

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

64

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
B	Li/NH3, <i>t-</i> BuOH, THF, 1 h	EtOH	(ca 100)	269
	Na (3.25)/NH3, <i>t</i> -BuOH, 20 min	H ₂ O	(80)	270
С21	Li (4)/NH3, t-BuOH, THF	NH4Cl	HO HH H H (ca 100)	43

A. Monocyclic Aromatics

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

A. Monocyclic Aromatics

ReactantReduction
ConditionsQuenching
AgentProduct(s) and Yield(s) (%)Refs.Image: ReactantNa (3.58)/NH3,
1-BuOH, THF,
40 minErOHImage: Image: Image

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS

B. Polycyclic Hydrocarbons

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C10	Na or Li (2)/NH3, Et2O, 3 h	NH4Cl	$ \underbrace{\bigcup_{I}}_{I} + \underbrace{\bigcup_{I}}_{II} + \underbrace{\bigcup_{I}}_{I} + \underbrace{\bigcup_{I}}_{I} + oligometric compounds (20-70*) $	190, 273
	NH3/Li (2.5), THF, -78°, 15 min	NH4Cl ^a	I (94*) + III (3*)	274
	NH3/Li (2.5), THF,30 min; FeCl ₃ , 45 min ^b	•	П (98*) + ПІ (1*)	274
	NH3/Li (5), THF, 30 min	•	П (1*) + Ш (98*)	274
	NH3/Na, EtOH, Et2O	H ₂ O	(62)	275

TABLE I. REDUCTION OF AROMATIC HIDROCARBONS (Continued)	TABLE I.	REDUCTION O	F AROMATIC	HYDROCARBONS	(Continued)
---	----------	--------------------	------------	--------------	-------------

B. Polycyclic Hydrocarbons

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	Li/NH3, Et2O, 3 h	H ₂ O	(96*)	276, 277
\bigcirc	NH3/Li (3), THF, -78°, 30 min	NH4Cla		29, 278
C ₁₂	NH3/Li (2.2), THF, 15 min		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	279, 280
		MeOH	I (57*) + II (22*) + III 5*) + IV (13*)	
		NH4Cl	I (100*)	
	NH3/Li (2.2), t-BuOH, 15 min	H ₂ O	I (30.5*) + II 15*) + III (18*) + IV (16.5)	

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

70

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	NH ₃ /Li (2.2), Et ₂ O, -78°, 5 min	NH4Cl	(39*) + (39*) + (11*)	282
$\overset{R^1}{\smile} R^2$	Li/NH3, Et2O, 3 h	H ₂ O	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	276
$R^1 = i$ -Pr; $R^2 = H$			I (95*) + II (5*)	
$\mathbf{R}^1 = \mathbf{H}; \mathbf{R}^2 = i - \mathbf{Pr}$		H ₂ O; H ₂ 10% Pd/C	I (54*) + II (45*)	
	NH3/Li (2.5), THF, FeCl3, 2 h	EtOH	(100)	51
	NH3/Li (3.5), THF, FeCl3, 1 h	H ₂ O	(80*)	38, 5

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	NH3/Na, EtOH, THF	NH4Cl	(78.2) ^c	283
				50
	NH3/Li (2.5), THF, 2 h	EtOH	I (76*) + II (9*)	
	NH3/Li (6), EtOH, THF, -70°	H ₂ O	I (8*) + II (80*)	
	NH3/Li (2.5), THF, FeCl3, 2 h	H ₂ O	(62*) + starting material (23*)	38

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	Na (2)/NH3, DME, 1 h	МеОН	(30-52)	189
	NH3/Li (2), THF, 10 min	NH4Cl	(94*)	288
	NH3/Na (3.5), THF, -78°, 30 min		(37)	289

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

T

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

TABLE I.	REDUCTION OF	F AROMATIC	HYDROCARBONS	(Continued)
----------	---------------------	------------	--------------	-------------

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

84

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

TABLE I. REDUCTION OF AROMATIC HYDROCARBONS (Continued)

B. Polycyclic Hydrocarbons

^a The reaction mixture was pumped (with argon pressure) through a glass tube into a large excess of saturated ammonium chloride solution.

^b After stirring the reaction mixture for 20-30 min a trace of FeCl₃ was added and the temperature allowed to increase from -78° to reflux (ca -33°) for the time indicated.

^c The yield represents a mixture of *cis* and *trans* isomers.

^d A solution of water (6 mmol) in THF (76 mL) was added over 10 min (half quench) to the product of lithium-*p*-terphenyl

interaction (without cosolvent), followed by addition of excess of solid NH4Cl.

TABLE II. REDUCTION OF AROMATIC ETHERS

Reactant	Conditions	Agent	Product(s) and Yield(s) (%)	Refs.
	NH3/Li (3.6), r-BuOH, THF, 1 h	MeOH	OMe (75)	299, 4
	Li (4)/NH3, 1-BuOH, THF, 25 min	t-BuOH, H2O	OMe (65)	300, 301
	NH3/Li (4), 1-BuOH, THF	MeOH	OMe (80)	302, 303
	NH3/Li (4), EtOH, 30 min	NH4CI	OMe (91)	304, 305
	reation	NH3/Li (3.6), r-BuOH, THF, 1 h Li (4)/NH3, r-BuOH, THF, 25 min NH3/Li (4), r-BuOH, THF NH3/Li (4), EIOH, 30 min	NH3/Li (3.6), t-BuOH, THF, 1 h MeOH Li (4)/NH3, t-BuOH, THF, 25 min t-BuOH, H2O NH3/Li (4), t-BuOH, THF MeOH NH3/Li (4), t-BuOH, THF MeOH NH3/Li (4), 30 min NH4Cl	$\frac{\text{NH}_{3}\text{/Li}(3.6)}{\text{1h}}, \frac{\text{MeOH}}{\text{1h}}, \frac{\text{OMe}}{\text{1h}}, \frac{\text{OMe}}{\text{1h}}, \frac{\text{OMe}}{\text{1h}}, \frac{\text{OMe}}{\text{1h}}, \frac{\text{OMe}}{\text{1h}}, \frac{\text{OMe}}{\text{1h}}, \frac{\text{OMe}}{\text{1h}}, \frac{\text{OMe}}{\text{25 min}}, \frac{\text{OMe}}{\text{1000 H}}, \frac{\text{OMe}}{\text{1000 H}$

TABLE II. REDUCTION OF AROMATIC BINERS (COMMAN	TABLE II.	REDUCTION	OF	AROMATIC	ETHERS	(Continue
--	-----------	-----------	----	----------	--------	-----------

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
MeO	NH3/Li, t-BuOH, THF, 2.5 h	О МеОН, H ₃ O+	(73)	321, 322
OMe OMe OMe	NH3/Na (6), EtOH	NH4Cl, H3O+	(60) (60)	323, 324
OMe	NH3/Li, THF, t-BuOH	-	O OMe ()	92
MeO OMe	NH3/Na, EtOH	NH4Cl, H3O+ O		128

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OMe	Li/NH3, H2O	-	OMe ()	329
NH ₂ CO ₂ H OMe	NH3/Na, t-BuOH	NH4CI	OMe (90)	330
OMe	Na/NH3, EtOH	EtOH, H3O ⁺	(60)	331

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OMe	NH3/Li, t-BuOH, Et2O, 6.5 h	МеОН, H3O+	(63) O	340, 4
MeO	NH3/Li (5), DME, 20 min	EtOH, AcOH- H ₂ O	0 (83)	327, 328
MeO	Li/NH3, Et2O	EtOH, H ₃ O+	0 (75)	341
MeO CO ₂ H	Li/NH3, <i>t-</i> BuOH, 2 h	NH4Cl, H3O ⁺	O CO ₂ H ()	342

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

102

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OMe OMe OMe	NH3/K (6), 30 min	EtOH	OMe (40) OMe	350, 331
OMe	NH3/Na, EtOF THF	i, "	OMe (63)	351

OMe OMe

352

(85)

105

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
MeO	Li/NH3, t-BuOH, THF	H ₂ O, H ₃ O+	O (77)	357
MeO CO ₂ H	NH3/Li (5), 1-BuOH, THF, 3 h	МеОН	MeO CO ₂ H (85)	2a
OMe CO ₂ H	NH3/Na, EtOH, 8 h	NH4Cl, H3O+	CO ₂ H (49, 53*)	358
Meo	NH3/Li, Et2O, 30 min	EtOH	MeO (95)	328

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

OSiEt ₃						ito) uno	11010(3) (70)	KCI
\mathbf{i}	NH3/Li (6.25), r-BuOH, THF, 45 min		C	Jo	SiEt ₃	87)		363
OMe	NH3/Li, EtOH, Et2O, 2 h		Z	OMe	(88)		364 252
SiMe ₃	Li (6)/NH3, t-BuOH, THF, 45 min	NH4Cl	R ²	`s ↓	\mathbb{M}^{R^1}	iMe ₂ R	I	349
			R ¹	R ²	R ³	R		
			н	н	н	t-Bu	I (95)	
			Me	н	н	i-Pr	I (89)	
			н	Me	н	i-Pr	I (89)	
			н	H	Me	i-Pr	I (90)	
			н	OMe	H	i-Pr	I (80)	

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

110

Ξ

Reactant	Reduction Conditions	Quenching Agent			Produc	ct(s) an	d Yield(s) (%)	Refs.
MeO	NH3/Li (4.6), Et ₂ O, 20 min	EtOH, H3O+	0	\bigcirc	\langle	\downarrow	(63)		369
O(CH ₂) ₂ NEt ₂	NH3/Na, EtOH, Et2O, 40 min	EtOH, H2O) (CH ₂)	(1 2NEt2	88)			94
R^2 R^3 R^4 R^4 R^1 $OSiMe_2R$	Li (6)/NH3, <i>t-</i> BuOH, THF 45 min	NH4CI	R ²			iMe ₂ F	I		349
			R1	R ²	R ³	R ⁴	R		
			Me	н	Н	Н	t-Bu	I (96)	
			н	Me	н	н	t-Bu	I (95)	
			н	н	Me	н	t-Bu	I (92)	
			Me	н	Me	н	i-Pr	I (93)	
			Me	H	H	Me	i-Pr	I (54)	
			н	OMe	н	н	t-Bu	I (85)	
			н	н	OMe	н	t-Bu	I (95)	

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

TABLE II. REDUCTION OF AROMATIC ETHERS (Con	nued)
---	-------

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C14 MeO	NH3/Na, EtOH, dioxane, 4 h	MeOH	MeO	306
)) OMe	NH3/Li, THF, 30 min	MeOH, NH4Cl	OMe (74)	370
мео	NH ₃ /Li, Et ₂ O, 25 min	EtOH, H3O+		371
CO ₂ H OMe	NH₃/Li, EtOH	H2O, H3O+	CO ₂ H O ()	372
C ₆ H ₁₁	NH3/Li, Et2O)2OH	EtOH	C ₆ H ₁₁ -O(CH ₂) ₂ OH (62)	4

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

121

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

122

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

126

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

132

No. of Carbon Atoms Reduction Conditions Quenching Product(s) and Yield(s) (%) Reactant Refs. Agent H 0 H H NH3/Li, t-BuOH, 403 H₂O OH H (61) THF, 4 h H Ĥ H Н MeO MeO OH OH ЮH OH NH3/Na, EtOH, EtOH (--) 404 OMe OMe THF NaO₂C NaO₂C Ĥ Ĥ Ŕ R (CH2)5 (CH2)5 NH4Cl 267 NH3/Li, t-BuOH, (--) THF, 2 h MeO OMe MeO OMe

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

NH₃/Li, EtOH, NH₄Cl THF, -40°, 30 min (94) MeO MeO OH (84) NH₃/Li, EtOH, THF, -78°, 30 min

MeO

57

56

135

MeO

Reduction Conditions Quenching Agent Product(s) and Yield(s) (%) Reactant Refs. 0 OH Ta Tu NH3/Na, *i*-PrOH, THF 405 MeOH T. T. (--) MeO MeO EtOH, H₂O 58 NH3/Li, EtOH, Et2O, 2 h (94) MeO MeO QH Н H (99) 59, 340 NH3/Na, *i*-PrOH, THF, 1 h MeO H H MeO

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

H

408

407

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

139

Table II. Reduction of Aromatic Ethers (Continued)

Table II. Reduction of Aromatic Ethers (Continued)

414

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

142

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

HO₂C

H

145

NH3/Li, t-BuOH, Et2O, 2 h

H₂O

420

Table II. Reduction of Aromatic Ethers (Continued)

Table II. Reduction of Aromatic Ethers (Continued)

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

148

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

150

152

153

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

TABLE II. REDUCTION OF AROMATIC ETHERS (Continued)

^a The alcohol (10 mmol) in THF (45 mL) was treated with ethereal methyllithium (10 mmol for each hydroxy group), then liquid ammonia, and ethanol and lithium were added successively to the reaction flask.

TABLE III. REDUCTION OF AROMATIC SILANES

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C, Si	iMe ₃	NH3/Li (2.5), EtOH, -70°	H ₂ O	SiMe ₃ (-)	249
C ₁₀ Si	iMe ₃	NH3/Li (2.7), EtOH, -70°		SiMe ₃ (60, 90*)	249
Si	Me ₃	NH3/Li (2.3), EtOH, -70°		SiMe ₃ (58, 95*)	249
c _{ii}	SiMe ₃	NH3/Li (3.1), EtOH, -70°		SiMe ₃ (70)	249

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
$C_{12} \qquad \qquad$	NH3/Li (2.8), EtOH, -70°	H ₂ O	$SiMe_3$ $SiMe_3$ $(46) + (38)$	249
	NH3/Li (4.0), EtOH, -70°		$Me_{3}Si \underbrace{SiMe_{3}}_{(3)} + \underbrace{SiMe_{3}}_{(82)}$	249
	NH3/Li (7.5), EtOH, -30°		()	249
	NH3/Li (6.0), THF, t-BuOH, -78°	NH4Cl	$siMe_3$ $cis/trans = 87/13 (86*)$ $siMe_3$	31

TABLE III. REDUCTION OF AROMATIC SILANES (Continued)

TABLE III. REDUCTION OF AROMATIC SILANES (Continued)

TABLE III. REDUCTION OF AROMATIC SILANES (Continued)

^a The reaction mixture was pumped (with argon pressure) through a glass tube into a large excess of saturated ammonium chloride solution.

159

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	K (6)/NH3, <i>t</i> -BuOH, Et ₂ O	H ₂ O	Et (78) + starting material (14)	101
°°	Li (5)/NH3, THF, 20 min, Co ²	NH4Cl	(91, 93*)	102 a
			I II III + R^1 IVa $R^1, R^2 = OH$ R^2 IVb $R^1 = H; R^2 = OH$ IVc $R^1, R^2 = H$	

TABLE IV. REDUCTION OF AROMATIC KETONES

TABLE I	v.	REDUCTION	OF	AROMATIC	KETONES	(Continued)

1	Reactant C	Reduction Conditions	Quenching Agent			Product	(s) and Y	ield(s) (%)	Refs.
			% composition ^c							
				I	п	ш	IVa	IVb	IVc	
	NH3/Li, THF, 11	h	C6H5CO2Na	-	100	-	-	-	-	102b
	Li (5)/NH3, THE	7, 1 h	NH4Cl	-		99	_	-	_	102a
			NH4Clb	1	70	13	1	_	-	103
	NH3/Li (5), THF	F, 1 h	NH4Cl	11	5	70	-	-	-	103
			NH4Clb	22	26	48	2	_	-	103
	NH3/Na (2.5), T	HF, 30 min		31	49	12	1	-	-	103
	", -78°, 30 min			30	56	4	2		-	103
	Li (5)/NH3, THE	F, -78°, 1 h		7	8	1	57	13	9	103
			NH4Cl	-	-	13	5	2	71	103
	NH3/Li (5), THI	F, -78°, 1 h	NH4Clb	21	11	9	21	24	9	103
	Ui (5)/N 2 h, Al	NH3, THF, a	NH4Cl		2	(79, 9	90*)			102a
\square	O Li (5)/N 1 h, Al	NH3, THF, a		" (73, 92*	•)					102a

_ _

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	Na (5)/ NH3, THF, 1 h	EtOH, NH4Cl	(81*)	110, 111
	NH3/Na (2.5), H2O (1.5), THF, 30 min	NH4Clb	(68, 95*)	113
	NH3/Li (4 or 8), THF, 30 min	NH4Cl	OH	111
	NH3/Li (4 or 8), THF, 30 min, FeCl3		I:II = 1:1	111
	NH ₃ /K (4 or 8), THF, 30 min		" (80)	111

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	Li (5)/NH3, THF, 1 h, Co ^a	NH4Cl	(77, 98*)	102a
		"	(87, 97*)	102a
	Na/NH3	H ₂ O	(ca 100)	431
	NH3/Na (2.5), H2O (1.5), THF, -78°, 30 min	NH4Clb	$(86^d) \ cis/trans = 60/40$	33, 113

TABLE IV. REDUCTION OF AROMATIC KETONES

TABLE IV. REDUCTION OF AROMATIC KETONES (Continued)

TABLE IV. REDUCTION OF AROMATIC KETONES (Continued)

^a The reduction was carried out in the presence of catalytic amounts of metal. ^b The reaction mixture was pumped (with argon pressure) through a glass tube into a large excess of saturated ammonium chloride. ^c Yields were measured by peak area on GC; the difference from 100% represents unreacted starting material. ^d The yield represents a mixture of *cis* and *trans* isomers.

Reactan	t Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C7 CO ₂ R	NH3/Na (3.3), EtOH	NH4Cl	(89-95)	433, 121
R = H R = Et	Mg (2)/NH ₃ , EtOH, Et ₂ O		CO ₂ Et ()	434
	NH3/Na (2.5), H2O (1.5), THF, 25 min, -78°	NH4Cla	CO ₂ R	229
$\mathbf{R} = t - \mathbf{B} \mathbf{u}$			R = Et (64) R = t-Bu (40)	
O NH ₂	NH3/Na (4.5), 1-BuOH	NH₄Cl	0 NH ₂ (82)	120, 155

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C8	CO ₂ H	NH3/Li (5), EtOH, 3 min	NH4Cl	CO ₂ H (100*)	123
Ć	CO ₂ H			CO ₂ H (85*) + CO ₂ H (11*)	123, 435
	CO ₂ R			CO ₂ R I	
R =	= H	NH3/Li (5), H2O	-	I (95) ^b	123

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
R = Et	Mg (2)/NH3, EtOH, Et ₂ O	NH4Cl	(40)	434
R = <i>t</i> -Bu	NH3/Na (2.5), H2O (1.5), THF, -78°, 30 min	NH4Cla	CO ₂ Bu- <i>t</i> (37)	229
CONH ₂	Mg (2)/NH3, EtOH	NH4Cl	CONH ₂ (32)	434
CONHMe	NH3/Na (2.3)	EtOH	CONHMe ()	155

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
с, с	CO ₂ H	NH3/Li (5), EtOH, 3 min	NH4Cl	(95*)	123, 435
	CO ₂ H			CO ₂ H (100*) ^b	123
/	CO ₂ H	·	•	CO ₂ H (100*)	123, 435
Ć	CO ₂ H	NH3/Li (4), 20 min		(99*) ^b	123

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
CO ₂ H	NH3/Li (5), EtOH, 3 min		CO ₂ H (95*)	123
CO ₂ H	•		CO ₂ H (100*)	123
CO ₂ H Et		. [Et (100*)	123
	NH3/K (2.2), 1-BuOH, THF, -78°	NH4Cl	CONMe ₂ (92)	157, 155

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	NH3/K (3.3)	EtOH	CONMe ₂ HO CONMe ₂ (55) + (35)	157
	NH3/Na (3.3)	NH4Cl	CONMe ₂ (29) OH	157
C ₁₀ CO ₂ H	NH3/Na (4), Et ₂ O, 3 h	NH4Cl	$ \begin{array}{c} CO_2H \\ Pr-n \\ (98) \end{array} $	242
Pr-i	NH3/Li (5), EtOH	u	CO ₂ H Pr- <i>i</i> (100*)	123

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

Pr-i

Pr-i

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
HO ₂ C	NH3/Li (4), Et2O, 4 h	NH4Cl	HO ₂ C (85)	242
	NH3/Li (3), 1-BuOH, THF, 10 min	EtOH	HO ₂ C (99)	127
R = H	NH3/Na (3.5), Et2O, -78°, 10 min	NH4Cla	I (ca 100)	139, 84
$\mathbf{R} = t - \mathbf{B} \mathbf{u}$	NH3/Na (2.5), H2O (1.5), THF, -78°, 25 min	•	I (42)	229

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

TABLE V.	REDUCTION	OF	AROMATIC	CARBOXYLIC	ACIDS	AND	DERIVATIVES	(Continued
		~	The office and	CARDOATLIC	ACIDS	AND	DERIVATIVES	(Continuea

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
\bigcirc	CO ₂ R			CO ₂ R I	
R = H	S	NH3/Li (4), Et2O	NH4Cl	I, (90) ^b	140
R = <i>t</i> -B	u	NH3/Na (2.5), H2O (1.5), THF, -78°, 20 min	NH4Cla	I, $(82)^b$; <i>cis/trans</i> = 40/60	33
CO	H Pr-i	NH3/Li (5), EtOH	NH4Cl	CO ₂ H Pr- <i>i</i> (100*)	123
t-Bu	CO ₂ H			CO ₂ H (100*)	123

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C13	CO ₂ H	NH₃/Li (2.5), Et ₂ O, 10 min	NH4Cl	(85)	140
Ph—	CO ₂ R			$Ph - CO_2R + I - II$	•CO ₂ R
R = H	I	NH ₃ /Na (2.5), H ₂ O (1.5), THF, -78°, 15 min	NH4Cla	(—) I:II = 3:1	147, 145
R = E	t	•		I (ca 100)	147
$\mathbf{R} = t$ -	Bu			I (ca 100)	146
R	CO_2R Et Et		•	$(80)^{b} cis/trans = 40/60$	33

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
t-Bu CO ₂ H Et	NH3/Li (5), EtOH, 3 min	NH4Cl	t-Bu CO ₂ H Et (100*)	123
CO ₂ R	NH3/Na (2.5), proton source THF, 30 min	NH4Cla	$H \rightarrow CO_2 R$ $H \rightarrow H$ $H \rightarrow H$	229
			H H CO ₂ R H I	
R = Et	H ₂ O (1.5)		I (66, 92*)	
	-		I (25*) + II (44,75*)	
R = t-Bu	H ₂ O (1.5)		I (65)	
	_		I (44*) + II (36, 56*)	

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

FABLE	v.	REDUCTION	OF	AROMATIC	CARBOXYLIC	ACIDS	AND	DERIVATIVES (Continued)
--------------	----	-----------	----	----------	------------	-------	-----	---------------	------------

TABLE V. REDUCTION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

^a The reaction mixture was pumped (with argon pressure) through a glass tube into a large excess of saturated ammonium chloride.

^c Dry ethanol was added to the reaction mixture within 5 min; after an additional 5 min, before the blue color was discharged, excess solid ammonium chloride was added.

^b The yield represents a mixture of cis and trans isomers.

^d Metal and alcohol were added to the reaction mixture over a period of 1 h.

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C ₅	NH3/Li (3), EtÕH	NH4Cl	(90) N H	444
	NH3/Li (2.5), -78°, 30 min	n	HN NH (92)	444
	NH3/Li (3), EtOH	u	(80) N H	444
	NH3/Na (2), EtOH	H2O, 30% H2SO4, 100°, 6 h	0 (12)	445

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C ₇	Li (9.9)/NH ₃ , EtOH, Et ₂ O	1.EtOH, NaOHaq (2.5 h, rt) 2. H ₃ O ⁺	(63) O	228
↓ N N N N N N N N N N N N N N N N N N N	NH3/Na, EtOH	H ₂ O O	(72)	446
	NH3/Na (2), EtOH	H ₂ O, 30% H ₂ SO ₄ , 100°, 6 h	(17)	445
$C_8 \qquad \qquad$	NHy∕Li (4), -78°	MeOH ^a	$ \begin{array}{c} \searrow \\ N \\ H \end{array} $ (51)	447, 448

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	NH3Na (2), EtOH	H ₂ O, 30% H ₂ SO ₄ , 100°, 6 h	(30)	445
C ₉	NH₃∕Li (4)	NH4Ci	(ca 100)	449
	NH3/Li (5), 1 h	MeOH ^b	(36) + (N) + (8) + (8) + (26) H I I I I I I I I I I I I I I I I I I	448)
	NH3/Li (5), MeOH	H ₂ O	I (5) + II (24) + III (9)	
N	NH3/Na, EtOH		NH (92)	450, 451

TABLE VI.	REDUCTION	OF	AROM	ATIC	HETEROCYCLES	(Continued)
	А.	Nit	rogen	Hete	rocycles	

_	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	Me	NH3/Li, Et2O	MeOH	(-)	448, 452
		NH3/Li, MeOH	H ₂ O	$I(32) + \underbrace{N}_{N}$ (37)	448, 452
	MeO N H	NH3/Li (4)	McOH ^b	MeO N H (82)	453
	MeO	NH3/Li, MeOH, THF	H ₂ O	MeO H (65)	448

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

•	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	MeO N Me	NH3∕Li (8), THF, 4 h	FeCl3, MeOH	MeO N N N N (70*) H I	448, 453
		NH3/Li (4), MeOH (excess)	H ₂ O	MeO (60*) + I (5*) starting material (8*) N Me	448
	NMe	NH3/Li, Et ₂ O, 15 min	EtOHc	NMe (89)	456
	CO2H NH2 H	NH3/Li, -78°, 40 min	MeOH, ^b NH4OAc	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & &$	457

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
R ¹ R ² NMe	NH3/Na, MeOH, E12O	H ₂ O	R^1 R^2 NMe I	456, 336
			R1 R2 H OMe I (98) OMe H I (97)	
R ¹ NH	Li/NH3, THF, -75°, 1 h	EtOH ^b	R^1 NH I R^2 NH I	458
			R1 R2 H OMe I (77*) OMe H I (50*)	
$C_{12} \qquad \qquad$	NH3/Li (3.4), -78°	i-PrOHª	(73) N H	447, 452

TABLE VI.	REDUCTION	OF	AROMATIC	HETEROCYCLES	(Continued)
	А.	Nit	trogen Hete	rocycles	

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
v	NH3/Na, EtOH, THF	H ₂ O	(-)	452
N Ph	Li (6)/NH3, EtOH, Et2O	1. EtOH, NaOH _{aq} (2.5 h, rt) 2. H ₃ O ⁺	Ph (71)	228
	NH3/K (4.4), t-BuOH (2), THF, -78°, 45 min	NH₄Cl	$ \begin{array}{c} $	162
	NH3/K (8), 1-BuOH (2), THF, -78°, 45 min	··	(85)	162

Ĥ

TABLE VI.	REDUCTION C	OF AROMATIC	HETEROCYCLES	(Continued)
	A. 1	Nitrogen Hete	rocycles	

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OMe NMe	NH3/Li (10), t-BuOH, Et2O	NH4Cl	MeO NMe (45)	461
C ₁₃	NH3/Li, EtOH, THF	H ₂ O	(62)	462
	NH3/Li, NH4OAc, THF	11		462
N Me	NH3/Na, THF, 30 min	NH4Cl	N Me Me	452

 $\mathbf{R} = \mathbf{M}\mathbf{e} \quad \mathbf{I} \quad (--)$ R = OMe I (---)

194

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C ₁₄	NH3/Na (2.2), THF, 15 min	NH4Cl	(87) N Ph	463
N H CH ₂ OMe	NH3/Na, THF, 30 min	NH4Cl, H3O+	(70) N H H I	452
	NH3/Na, EtOH THF	i, H2O, H3O+	I (8) + N (42) H	452
	NH3/K (2.2), 1-BuOH (1), THF, -78°	NH4Cl	O H O Me O Me O Me (92)	39

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

196

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

Re	actant		Reduction Conditions	Quenching Agent			Produ	ct(s) and	l Yield(s) (%)	Refs.
R ¹	R ²	<u>R³</u>				R ¹	R ²	R ³		
(+)-I H	н	ОН	"	MeOH	(+)-II	н	н	ОН	(96)	469, 47
и н	OBn	Н	**	"	II	н	ОН	н	(90)	311
I OH	н	ОН	n	NH4Cl	II	ОН	н	ОН	(95)	471
I OBn	н	OBn	**	97 17	II	Ħ	"	"	(92)	472, 47
I OH I OBn	н н 20	OH OBn	" NH3/Li, EtOH,	NH4CI "	н		н " =0	ОН "	(95) (92)	47 47: 47:

474

TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued) A. Nitrogen Heterocycles

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
N OH	NH3/Li, Et2O, 2 h	EtOH		475
C_{18}	NH3/Na (2.2), THF, 15 min	NH4Cl	(73) N Ph	463
NMe N I Ph	"	'n	NMe (84) I Ph	463

201

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

202

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.	
	<i>t</i> -BuOH (1)		I (70) + II (1)		
	t-BuOH (5)	"	I (50) + II (31)		
	<i>t</i> -BuOH (10), 45 min	"	I (26) + II (59)		
MeO HO MeO	Li/NH3, EtOH, -60°	NH4CI	MeO HO MeO ()	477	
MeO OH	Na/NH3, THF, -70°, 30 min	11	OH N MeO (ca 100)	482	

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

208

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

 $R = C_2 H_4 O_2$ ketal

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C ₂₂ N H HO ₂ C OM	NH3/Na, i-PrOH OMe	_	(-)	498
C ₂₄ R H H	NH3/Na (3), EtOH, Et2O, ~ -70°, 1 h	H2O, NaOH		499
$R = C_2H_4O_2$ ketal			$R = C_2H_4O_2$ ketal	

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 A. Nitrogen Heterocycles

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C ₅ CO ₂ H	Li (2.5)/NH ₃ , -78°, 3 min	NH4Cl	(80)	500
	NH3/Na, G ^c	H ₂ O, CH ₂ N ₂	CO ₂ Me ()	501
CO ₂ H	NH3/Na (3), MeOH, 1 h	NH4Cl, H3O+, CH2N2	MeO O (87)	502, 503
	NH3/Na (5), EtOH, 1 h		EtO O (92)	502
	NH3/Na (3), <i>i</i> -PrOH, 1 h	"	CO ₂ Me (85)	502

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	NH₃⁄Li (4), 35 min	NH4Cl, H3O+	$HO^{r}OOO$ (28)	504
	NH3/Na, G ^c	H2O, CH2N2	* CO ₂ Me ()	501
C ₆	NH ₃ /Li (3), MeOH, 30 min	MeOH, HCl ^e	(83,90*)	505, 506
CO ₂ H	NH3/Na, MeOH, 1 h	NH4Cl, H3O+, CH2N2	MeO O (95)	507
C7 Et O CO ₂ H	NH3/Li (3), MeOH, 30 min	MeOH, HCl ^d	$Et O CO_2 Me^{(85,90*)}$	505

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 B. Oxygen Heterocycles

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C ₈	"	n	<i>n</i> -Pr O CO ₂ Me (75,93*)	505
i-Pr O CO ₂ H	"	11	<i>i</i> -Pr O CO ₂ Me ^(70,85*)	505
C9 MeO	NH3/Li (5), EtOH	NH4Cl	MeO (88)	508
	NH3/Li, 7-BuOH, Et2O, 6.5 h	MeOHª	$ \begin{array}{c} \hline \\ \hline \\$	509 -)
MeO	NH3/Li (5), EtOH	NH4Cl	MeO ()	508

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
t-Bu O CO ₂ H	NH3/Li (3), MeOH, 30 min	MeOH, HCld	$t-Bu$ O CO_2Me $(71,87*)$	505
C10 MeO	NH3/Li, EtOH	NH4Cl	MeO(70)	508
$\langle \mathcal{A} \rangle$	NH3/Na (4), EtOH, THF, -70°	11	$\langle 0 $ $(-)$	510
	NH3/Na (4), EtOH, THF, -70°	NH4Cl	(60)	510
MeO	NH3/Li, Et2O, 2 h	EtOH ^b	MeO (81)	511

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 B. Oxygen Heterocycles

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
MeO	NH3/Li (3.8), EtOH	NH₄Cl	MeO (80)	508
	NH3/Li, t-BuOH, THF	Π	(82) OMe	512
	NH3/Na (4), EtOH, THF, -70°	**		510
C ₁₂ Ph CO ₂ H	NH3/Li (3), MeOH, 30 min	MeOH, HCld	$Ph \underbrace{\bigcirc}_{O} CO_2 Me^{(40,55^*)}$	505
	NH3/Na (4), EtOH, THF, -70°	NH4Cl		510

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 B. Oxygen Heterocycles

219

220

 TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued)

 C. Sulfur Heterocycles

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C4	$\langle s \rangle$	NH3/Li (2.2), MeOH, -40°, 8 h	H ₂ O	$\left(12\right)^{+} \left(26\right)^{+} \begin{array}{c} \text{starting} \\ \text{material} \\ (30)^{+} \end{array} \begin{array}{c} \text{cleaved} \\ \text{product} \\ (17) \end{array}\right)$	517
C5	⟨_ _S ⟩ _{CO₂H}	NH3/Li (3), 5 min	NH4Cl, CH2N2	(78*) S CO ₂ Me	518, 519
	CO ₂ H	NH3/Na (2.5), <i>ì</i> -PrOH, 1 h	H3O+	.CO ₂ H + starting material () 3:2	520
	\sqrt{s}	NH3/Li (2.2), MeOH, -40°, 8 h	H ₂ O	$(7)^+$ $(32)^+$ starting material $(27)^+$ product (10)	521
	\sqrt{s}	"	'n	S + S +	521
C ₆	CO ₂ Li	NH3/Li (2), 30 min	NH4Cl	(75)	522

		Reactant		Reduction Conditions	Quenching Agent		Product(s)	and Yield	d(s) (%)	 Refs.
	\int_{S}	CO ₂ Li		IT	**	\sqrt{s}	(50 ℃O ₂ H))		522
	t-Bu	S O	Bu− <i>t</i>	NH3/Li, <i>t-</i> BuOH, -78°, 10, min	_	t-Bu		u- <i>t</i> ⁽⁸⁸⁾)	523
C ₁₈	MeO	H	$R \xrightarrow{R^1} R^2$	2 Li/NH3, THF, -78°	EtOH, H3O+	0 H	R H H H H	\mathbb{R}^1 \mathbb{S}_{O_2}	R ^{2 I}	524
	<u>R</u>	<u>R1</u>	<u>R</u> 2			R	<u>R</u> 1	<u>R</u> 2		
	Н	OAc	н			ΙН	ОН	н	(73)	
	Н	Н	OAc			ΙH	н	ОН	(62)	
C19	Me	OAc	Н			I Me	OH	Н	(58)	

TABLE VI. REDUCTION OF AROMATIC HETEROCYCLES (Continued) C. Sulfur Heterocycles

^a Metal and alcohol were added slowly in alternating proportions to the reaction mixture. ^b Alcohol was added slowly to the reaction mixture until the color disappeared. ^c The use of 1,2:5,6-di-O-isopropylidene-å-D-glycopyranose (G) as the proton source caused asymmetric reduction. ^d The mixture, after removal of the ammonia, was mixed with dry methanol. Hydrogen chloride gas was passed into the solution until the pH became 1.

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C7 CO ₂ H	NH3/Na (3), EtOH	NH4Cl	CO ₂ H F (50)	525
OMe OH	Li, NH3, Et ₂ O, -78°, 45 min	EtOH	OMe (ca 100) OH	526
C8 CN OMe	NH3∕Li, 1-BuOH, THF, -78°	NH4Cl	CN OMe (76)	157
CO ₂ H OMe	NH3/Li (2.5), MeOH, ^a 35 min		OMe ()	131, 4
Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
----------------------	----------------------------	--------------------	-----------------------------	---------
C8 CO ₂ H	NH3/Li (2.5)		(ca 100) OMe	131, 12
	NH3/Na, EtOH, 45 min	"	2H (96) OMe	130, 52
	NH₃/Li (3), H2O, 30 min	Н30+	2H (94)	528
	NH3/Li (2.5)	NH4CI	2H] ()	131, 12

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

230

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
			I $R = NHCH_2CO_2H$ (40)	
			I $R = NHCH_2CONH_2$ (10)	
			$I R = NMe_2 (6)$	
			I $R = NHEt$ (64)	
			I $R = NHCH_2CH_2OH$ ()	
C ₁₃ MeO	NH3/Li (2, 4 or 8), THF, 30 min	NH4Cl	$MeO \xrightarrow{I} I I I I I I I I I I I I I I I I I I $	111, 542
	NH3/K (4 or 6) THF, 30 min	, "	MeO (70)	111

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

235

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE VII. REDUCTION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OMe 0	NH3/Na, t-BuOH, THF	NH4Cl	OMe O O O O O O O O O O O O O O O O O O	442
$R = C_2 H_4 O_2 \text{ ketal}$				

^a 2-Methoxybenzoic acid with Li (3)/NH₃ showed (NMR) about 70% loss of OMe. The presence of MeOH produces

c An ammonia-THF solution of this compound was treated with 1 equiv. of t-BuOK before normal Birch reduction.

²⁻methoxy-1,4-dihydrobenzoic acid with little loss of OMe.

^b Sodium metal was added to the reaction mixture over 3 h.

Reactant	Reduction Conditions	Quenching Agent		Product(s) and Yield(s) (%)	Refs.
c ₁₀	NH ₃ /M, THF, RX 20 min	\bigcirc	R I +			
			R	I	ш	
	Na (2.5)	MeBr (gas)	Me	-	(85*)	52
	Li (3.5)		"	(95*)	(2*)	52
	Na (2.5)	MeBr (liq)		(20*)	(80*)	11
		MeBr (liq)a		(90*)	-	11
		EtBr	Et	(25*)	(75*) ^b	11
		EtBra		(90*)	(9*) ^b	11

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS (Continued)

Reactant	Reduction Conditions	Quenching Agent		Product(s) as	nd Yield(s) (%)	Refs.
	NH3/M (2.5), 20 min, cosolvent	RX		$+ \frac{R}{H} \frac{R}{R}$		
			I(R = Me)	II (R = Me)	III (R = Me)	
	Li	MeBr	99	1	_	280
	Ca		100	_	_	280
	Na		50	40	10	280
	Na, toluene	•	68	32	-	280
	Na, TMEDA		51	43	3	280
	Na, THF	0	38	54	7	280
	Na, DME		45	46	9	280
	NH ₃ /Li (2.4), Et ₂ O, -70°, 1 h	CICH ₂ CO ₂ Me	$R = CH_2C$	O ₂ Me I (55)	555
		Cl(CH ₂) ₂ NMe	$R = (CH_2)$	2NMe2 1 (20-30)	556

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
c ₁₃	Li (2.2)/NH3, Et2O, -78°, 5 min	MeBr (gas)	(45*) + K	282	
				$R = H (26^*)$ $R = Me (13^*)$	
\bigcirc	\rightarrow	NH3/Li (3.8), THF, 30 min	w	$Ph \xrightarrow{H} + \swarrow \qquad II$ $I:II = 45:55 (-)$	29
\bigcirc	$\rightarrow \bigcirc$		ñ		29
				I:II = 80:20 ()	

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS (Continued)

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS (Continued)

Reactant	Reduction Conditions	Quenching Agent	_	Pr	oduct(s) and Yie	eld(s) (%)	Refs.
	RX	\bigcirc	R) + (R		
			R	I I*	<u>cis-П*</u>	R II <u>trans II*</u>	
	Li (2.5)/NH ₃ , THF, 1 h	MeBr (gas)	Me	-	78	22	557
	NH ₃ /Na (2.5), Et ₂ O, 15 min	Mela	Me	95		56	11
	Li (2.5)/NH ₃ , THF, 1 h	EtBr	Et	-	84	16	557
		EtBra	Et	97	3	-	11
		i-PrCl	i-Pr		70	18	557
	•	t-BuBr	t-Bu	14	2	÷.	557
	NH3/Li (5), THF, 5 min	MeBr	\bigcirc	S) (53, 93*)		38

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS (Continued)

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS (Continued)

248

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS (Continued)

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS (Continued)

TABLE VIII. REDUCTIVE ALKYLATION OF AROMATIC HYDROCARBONS (Continued)

^a The reaction mixture was pumped (argon pressure) through a glass tube into a large excess of alkyl halide in THF (inverse quench).

^c The yields were based on biphenyl converted and measured by peak area on GLC.

 d A solution of water in THF (half quench) was added to the reaction mixture over 10 min, then a stream of methyl bromide was passed through a column of 50% silica gel-sand into the reaction vessel until the color of the solution was discharged.

^b The yield represents a mixture of *cis* and *trans* isomers.

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	NH3/M (2.2-2.5), proton source, THF, -78°, 10 min	RX ^b		0Me + 83
			IV V % composition ^c	vI
			и ш ш	<u>v</u> <u>v</u> i
	Li, H ₂ O (1.1)	MeI	21 — 1 47	11 3
	Li, AcOH (1)		41 1 2 18	19 3
	Li, t-BuOH (1.2)	•	26 5 6 19	8 8

TABLE IX. REDUCTIVE ALKYLATION OF AROMATIC KETONES

Reactant	Reduction Conditions	Quenching Agent		Pro	duct(s) a	nd Yield	(s) (%)	_	Refs.
			L	ш	ш	<u>IV</u>	v	VI	
	Li, t-BuOH (6)	•	36	2	3	23	3	4	
	Na, t-BuOH (1.2)		12	25	23	8	3	3	
	Na, t-BuOH (1.2), Lil ^a	•	53	-	1	14	3	9	
	Na, t-BuOH (1.2), LiBr ^a	•	61	-	1	21	3		
	K, t-BuOH (1.2), LiBr ^a		84	-	1	2	3	7	
		Etl	59	-	-	_	-	-	
		CICH ₂ CN	26	-	-	_	-	-	
	•	CH ₂ Br	85	-	-	- <u></u>	-	-	
	•	BrCH ₂ CO ₂ Et	62	-	-	-	-	-	
°, o	NH3/K (2.5), <i>t</i> -BuOH (2), THF, -78°, LiBr ^a	MeI ^d		L) (53))			106, 558

TABLE IX. REDUCTIVE ALKYLATION OF AROMATIC KETONES (Continued)

TABLE IX. REDUCTIVE ALKYLATION OF AROMATIC KETONES (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
↓°	NH3/K (2.5), t-BuOH (2), THF, -78°, LiBr ^c	Mel ^a	$\bigcup_{\substack{\{55^*\}^e}}^{O} + \bigcup_{\substack{(26^*)}}^{OH}$	83
C ₁₀ O			(60)	83
	Li (2.5)/NH ₃ , THF, 10 min	RX	R	109, 111
		MeI	I, $R = Me (65, 96^*)$	
		n-C5H11I	I, R = $n - C_5 H_{11}$ (59, 72*)	

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	NH3/Li (4), THF, 30 min, FeCl3	MeI	(80)	111
C ₁₄ O	Li (3.5)/NH ₃ , THF, 10 min	MeI	(51, 55*)	115
	NH3/Li, 1-BuOH (3), THF, -78°, 10 min			164

TABLE IX. REDUCTIVE ALKYLATION OF AROMATIC KETONES (Continued)

TABLE IX. REDUCTIVE ALKYLATION OF AROMATIC KETONES (Continued)

258

TABLE IX. REDUCTIVE ALKYLATION OF AROMATIC KETONES (Continued)

^a The ammonia was evaporated during 1-4 h, and the resulting pasty mixture was alkylated by adding alkyl halide and stirring the mixture at 0-10° for 40 min.

b Yields were measured by peak area on GC; the difference from 100% represents starting material, propio- and isobutyrophenone.
 c The resulting blue solution was mixed with anhydrous lithium halide (2.2 equiv) and stirred at -78° for 40 min.
 d After 20 min, alkyl halide and aqueous THF (1:1) were added simultaneously to the reaction mixture.
 e The yield represents a mixture of both isomers.

	Reduction Reactant Condition	on Quenching ons Agent	Product(s) and Yield(s) (%)	Refs.
	O ₂ R NH3/Li (-78°	4), R ¹ X		
R = H	ı "	MeI	I (96*)	123
		EtBr	I (99*)	123
		MeOCH ₂ Br	I ()	560
		BrCH2CO2H	I (79)	561
	- P	n-PrBr	I (98*)	123
	•	i-PrBr	I (98*) [,]	123
		t-BuBr	I (12)	561
	•	PhCH ₂ Br	1 (62)	561
		C ₆ H ₁₁ CH ₂ Br	I (54)	561
		n-C7H15I	I ()	125
		3,5-(MeO)2C6H3CH2Br	I ()	562
,		$CH_2 = CHCO_2Me, CH_2N_2$	I R = Me; $R^1 = (CH_2)_2 CO_2 Me$ (65)	124

TABLE X. REDUCTIVE ALKYLATION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
R = H		MeCH=CHCO ₂ Me, CH ₂ N ₂	I, R = Me; R ¹ = MeO ₂ CCH ₂ CH (70) \downarrow Me	124
		Р H ₂ C-CHC ₅ H ₁₁ - <i>n</i>	I, R = H; R ¹ = n -C ₅ H ₁₁ CHOHCH ₂ ()	125
R = Me		R ¹ X		563
		BrCH=CHCH2Br	I ()	
		Br(CH ₂) ₃ Br	1 ()	
	•	2-IC ₆ H ₄ CH ₂ Br	I ()	

TABLE X. REDUCTIVE ALKYLATION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

TABLE X. REDUCTIVE ALKYLATION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
$C_8 CO_2R$			$R^1 \xrightarrow{CO_2R}$	
\bigcirc	NH3/Li (4), 20 min	R ¹ X		
R = H		MeI	1 (98*)	123
		EtBr	1 (66)	564
		i-PrBr	I (98*)	123
		PhCH ₂ Br	1 (51)	564
R = Me		Br(CH ₂) ₃ Br	I ()	563
CO ₂ H NI 2	NH3/Li (4), 20 min	R ¹ X		
		MeI	I (99*)	123, 565
		i-PrBr	I (—)	137
		CH ₂ Br	I (94)	566

263

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
		$CH_2 = CHCH_2CH_2Br$	I (91)	566
		PhO(CH ₂) ₄ Br, ^a NH ₄ Cl, H ₃ O ⁺	I, $R^1 = HO(CH_2)_4$ (75)	567
CO ₂ H		MeCH=CHCO ₂ Me, CH ₂ N ₂	MeO ₂ C CO ₂ Me ()	124
C9 CONMe2	NHYLi, 1-BuOH (1), THF, -78°	PhCH ₂ Br, NH ₄ Cl ^b	PhCH ₂ CONMe ₂ (76)	157
C ₁₀ CO ₂ H Pr- <i>i</i>	NH3/Li (4), 20 min	i-PrBr	<i>i</i> -Pr Pr- <i>i</i> (97*)	123

TABLE X. REDUCTIVE ALKYLATION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
CO ₂ H	NH3/Na, Et2O	n	CO ₂ H (74)	569
CO ₂ H Bu-t	NH3/Li (4), 20 min	RX	R CO ₂ H Bu- <i>t</i>	123
		MeI	I (99*)¢	
		EtBr	I (94*) ^c	
		<i>i</i> -PrBr	I (93*)¢	
C ₁₃ CO ₂ H	NH3/Li,(2.5) Et2O, 10 min	Mel	(83)	140

TABLE X. REDUCTIVE ALKYLATION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

TABLE X. REDUCTIVE ALKYLATION OF AROMATIC CARBOXYLIC ACIDS AND DERIVATIVES (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
CO ₂ Me Ph	NH3/Li, " 1-BuOH (3), THF, -78°, 10 min		(90)	164

^a After stirring for 1 h the solution was treated with *tert*-butyl alcohol. Lithium wire was again added to maintain the blue color, and after 20 min ammonium chloride was added.

 b After addition of alkyl halide the resulting solution was stirred for 1 h at -78°. It is essential to quench the alkylation reaction mixture with excess ammonium chloride before evaporation of ammonia.

^c The yield represents a mixture of cis and trans isomers .

^d The solution was cooled to -70° and dry methyl iodide was added dropwise. After 15 min the colorless solution was treated with solid ammonium chloride.

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs
Co CO ₂ H	NH3/Na (2.3), EtOH, Et ₂ O, 1 h	NH4Cl, ⁴ PhCH2Br	$\left< \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	570
	NH3/Li (3), EtOH, -78°, 1 h	(MeO)2CO	(56) N CO ₂ Me	571
	NH3/Li (3), -78°, 1 h	•	MeO ₂ C-N/N-CO ₂ N/	Ле ₅₇₁
* Cs	NH ₃ /Na (2.3), EtOH, Et ₂ O, 1 h	NH4Cl, ^a PhCH2Br	s Ph (73)	570

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs
CO ₂ H	Li (2.5)/NH ₃ , -78°	RX		
		MeI	1 (75)	572
		Etl	1 (75)	572
		<i>i</i> -PrBr	I (95)	572
		CH ₂ Br	1 (68)	572
		PhCH ₂ Cl	I (75)	572
		n-C6H13Br	1 (85)	136
		CH ₂ Br	1 (65)	136
CO2H	Li (2.5)/NH ₃ , -78°	RX		136
		CH ₂ Br	1 (75)	

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs
$C_8 \qquad \qquad$	NH3/Na (2.3), EtOH, Et2O, 1 h	NH4Cl,ª RX	$\left\langle \mathbf{s} \right\rangle \stackrel{\mathbf{R}}{\underset{\mathbf{O}}{\overset{\mathbf{Pr}-n}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}{\overset{\mathbf{I}}}{\overset{\mathbf{I}}$	570
U U		MeI	I (72)	
		CH ₂ Br	I (68)	
		n-C4H9Br	I (55)	
		PhCH ₂ Br	I (82)	
^C ⁹	NH3/Li (2.5), 30 min			573
		(MeO) ₂ SO ₂ ^b	I, R = Me (88)	
		EtBr ^b	I, $R = Et$ (80)	
		n-PrBr ^b	I, $R = n$ -Pr (89)	
		: p.p.h	$I P = i_{-}P_{T}$ (78)	

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

272

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
		MeI	I (54)	
		Etl	I (68)	
		$CH_2 = CHCH_2Br$	I (62)	
		CICH2CH2CH2Br	I (44)	
		$CH_2 = CHCH_2CH_2Br$	I (25)	
		PhCH ₂ Br	I (68)	
	NH₃/K, 1-BuOH, THF, -78°	RX	$ \begin{array}{c} R \\ \hline \\ 0 \\ H \\ \end{array} + \begin{array}{c} R \\ \hline \\ 0 \\ H \\ \end{array} \right\} $	
		MeI	I (67) + II () I:II = 85:15	158, 39
		EtI	I (82) + II () I:II = 99:1	158, 39
		$CH_2 = CHCH_2Br$	I (75) + II () I:II = 98:2	158, 39
		$CH_2 = CHCH_2CH_2Br$	I (89) + II () I:II = 98:2	158, 39
		CICH2CH2CH2Br	I (91) + II () I:II =	161
		PhCH ₂ Br	I (73) + II () I:II =	39
		(MeO)2CHC(Me)2(CH2)3I	I (96) + II () I:II =	150

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs
<u>R1</u>	<u>R</u> ²				
Me	н		MeIc	I (53)	
н	Me			I (78)	
			ЕПС	I (87)	
			$CH_2 = CHCH_2Br^c$	I (68)	
			PhCH ₂ Br ^c	1 (78)	
\bigcirc	OMe H OH	NH3/K (2.2), 1-BuOH (1), THF, -78°	MeI	OMe OH (85)	159
L	C7H15-n	NH3/Na (2.3), EtOH, Et2O, 1 h	NH4Cl,ª MeI	$\int C_7 H_{15} n$ (44)	570

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

TABLE XI. REDUCTIVE ALKYLATION OF AROMATIC HETEROCYCLES (Continued)

^a After stirring for 1 h, solid ammonium chloride (1.2 equiv) was added and then the mixture was stirred for an additional 30 min. Then excess alkylating agent was added slowly into the reaction mixture and it was stirred for an additional 1 h.

 b The deep blue-green solution was cooled to ca -70° and the appropriate alkylating agent was introduced from a syringe. c Before alkylation 1,3-pentadiene (2-3 drops) was added to the reaction mixture to destroy the excess metal.

^d The yield represents a mixture of *cis* and *trans* isomers.

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C8 (OMe	NH3/Li, t-BuOH (1), THF, -78°	Br(CH2)3Cl, NH4Cl4	NC OMe (85)	157
Ć	CO ₂ R	NH ₃ /K (2.5), <i>t</i> -BuOH (1), <i>t</i> -BuOK (1), ^b THF, -70°, 10 min ^c	R ¹ X	OMe R ¹ CO ₂ H I	
R =	н		MeI	I (84)	134, 132
		NH3/Li, - 78°, THF	∕ ^{CH₂Br}	I (—)	574
			$CH_2 = CHCH_2CH_2Br^d$	I (—)	575
			$MeCH = CHCH_2Br^d$	1 ()	575
			$CH_2 = CH(CH_2)_3Br^d$	1 ()	575
			R ¹ X ^d , H ₃ O+		

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
		n-PrI	I (30)	576
		i-PrI	1 (26)	576
		$CH_2 = CHCH_2Cl$	1 (27)	576
		n-C5H11Br	I (27)	576
		CH ₂ I	I (34)	577
	NH3/Na, THF	n-C7H15Br	I (46-59)	578
R = Me	NH ₃ /K (2.5), t-BuOH (1), THF, -70°, 10-30 min ^c	R ¹ X	OMe R ¹ CO ₂ Me I	
		MeI	I (95)	134, 5
		Etl	I (96)	134, 5
		n-PrCl	I (67)	579
		i-Prl	I (90)	152
		$CH_2 = CHCH_2Br$	I (79)	580, 58
		CH ₂ = CBrCH ₂ Br ^e	I (76)	580

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent		Product(s) and Yield(s) (%)	Refs.
	NH ₃ /K (2.5), t-BuOH (1), THF, 70°, 10-30 min ^c , LiBr ^g	CICH ₂ CH ₂ CH ₂ Br	I (65)	152, 56
		AcOCH ₂ CH ₂ Br	1 (85)	581
		$CH_2 = CHCH_2CH_2Br$	I (76)	580, 15
		CH ₂ = CHCH ₂ CH ₂ CH ₂ Br ^e	I (67)	580
		PhCH ₂ Br	1 (78)	581, 15
		(MeO) ₂ CHCMe ₂ (CH ₂) ₃ I	I (98)	150
	NH ₃ /K (2.5), <i>t</i> -BuOH (1), THF, 70°, 10-30 min ^c , LiI ^g	CH=CHCO ₂ Me ^e CH ₂ Br	I (56)	580
	•1	LDA, ^f MeÇ=CHCH ₂ I OSiMe ₃	I R ¹	$= MeCOCH_2CH_2 (82)$	149
		LDA, EtC=CHCH2I	I R ¹	$= EtCOCH_2CH_2 (82)$	149

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
$\mathbf{R} = t \cdot \mathbf{B} \mathbf{u}$	NH3/K (2.5), t-BuOH (1), THF, -70°, 10-20 min ^c	R ¹ X	MeO R ¹ CO ₂ Bu-t I	
		MeI	I (96)	134
		i-PrI	I (94)	134
		$CH_2 = CHCH_2CH_2Br$	I (nil)	134
	" + LiBrø	$CH_2 = CHCH_2CH_2Br$	I (60)	134
CO ₂ R OMe	NH3/M (2.5), THF, -78°	R ¹ X	R ¹ CO ₂ H I OMe	
$\mathbf{R} = \mathbf{H}$	M = Li	MeI	I (90*)	582, 13
	M = Li	<i>i</i> -PrBr	I (—)	137
	M = Li	CH ₂ Br	I (—)	575
	M = Na		I (90)	583

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C9	OMe CO ₂ Me	NH3/K (2.5), t-BuOH (1), THF, -78°, 10 min ^c	MeI	OMe CO ₂ Me (69)	152
/	OMe CO ₂ Me		•	OMe CO ₂ Me (80)	152
ĺ	CO ₂ H OMe	NHyLi (6)	CO ₂ Me, H ₃ O ⁺	HO_2C . CO_2Me (60)	584

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	MeO CO ₂ R	NH3/Li, THF	R ¹ X	$ \begin{array}{c} OMe \\ R^1 \\ CO_2R I \end{array} $	
	 R = H		CH2=CHCH2Brd	 I (50)	575
			CH2=CHCH2CH2Brd	I ()	575
			MeOCH ₂ CH=CHCH ₂ Br	I (—)	575
		NH3/Na (2.5), t-BuOH (2), -70°	LDA f, 2-Me-3-MeOC ₆ H ₃ (CH ₂) ₂ I	1.(—)	133
R = Me	R = Me	NH ₃ /K (2.5), <i>t</i> -BuOH (1), THF, -70°, 10 min ^c	MeI	I (74)	152
		" + LiBrø	CH2=CHCH2CH2Br	I (85)	151
		" + HMPA	2-Me-3-MeOC ₆ H ₃ (CH ₂) ₂ I ^e	I (60)	134

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs
MeQ			QMe	
CO ₂ R	NH ₃ /K (2.5), <i>t</i> -BuOH (1), THF, -70°, 10 min ^c	R ¹ X		
R = H	" + t-BuOK (1) ^b	MeI	I (90)	134
	" + <i>t</i> -BuOK (1) ^b	PhCH ₂ Br	I (91)	134
	" + <i>t</i> -BuOK (1) ^b	CH ₂ = CHCH ₂ CH ₂ Br ^e	I (87)	134
R = Me	" + LiBr	$CH_2 = CHCH_2CH_2Br$	I (57)	151
$\mathbf{R} = t - \mathbf{B}\mathbf{u}$		MeI	I (96)	134
MeO				
MeO CO	"	MeI	MeO CO ₂ R (70)	134
R = Me			~	

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OMe CO ₂ R OMe	NH3/Li (2.5), THF, -78°, 15 min ^c	R ¹ X	$ \begin{array}{c} OMe \\ R^1 \\ CO_2R \\ OMe \end{array} $	
R = H		MeC=CHCH2I SiMe3	$I, R^1 = MeCOCH_2CH_2$ (82.5)	149
		EtC=CHCH2I SiMe3	$I, R^1 = EtCOCH_2CH_2 (93)$	149
		O CH ₂ I	$I, R^1 = EtCOCH_2CH_2 (67)$	148
		PhCH ₂ Br	$I, R^1 = EtCOCH_2CH_2 (74)$	585
		2-MeC ₆ H ₄ CH ₂ Br	I, $\mathbb{R}^1 = \text{EtCOCH}_2\text{CH}_2$ (74)	585
		3-MeOC ₆ H ₄ CH ₂ Br	$I, R^1 = EtCOCH_2CH_2 (75)$	585

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
		4-MeOC ₆ H ₄ CH ₂ Br	I, $R^1 = EtCOCH_2CH_2$ (77)	585
		3,5-(MeO) ₂ C ₆ H ₃ CH ₂ Br	I, $R^1 = EtCOCH_2CH_2$ (68)	585
		2-CO ₂ Me, 3-MeO- C ₆ H ₃ CH ₂ Br ^e	$I, R^1 = EtCOCH_2CH_2 (88)$	586, 5
	•	PhCH ₂ CH ₂ I	I, $R^1 = EtCOCH_2CH_2$ (70)	588
	•	3,5(MeO)2C6H3(CH2)2I	I, $R^1 = EtCOCH_2CH_2$ (82)	589, 5
	•	3-MeOC ₆ H ₄ (CH ₂) ₂ I	I, $R^1 = EtCOCH_2CH_2$ (63)	588
		2-CO ₂ Me, 3-MeO- C ₆ H ₃ (CH ₂) ₂ I	$I, R^1 = EtCOCH_2CH_2 (50)$	588
R = Me	NH3/Li (2.2), t-BuOH (1), THF, -78°, 20 min ^c	CH2=CHCH2CH2Br*	I, $R^1 = EtCOCH_2CH_2$ (96)	151
		MeC=CHCH2I SiMe3	I, $R^1 = MeCOCH_2CH_2$ (79)	149
		EtC=CHCH ₂ I § OSiMe ₃	$I, R^1 = EtCOCH_2CH_2 (83)$	149

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OMe CO ₂ R OMe	NH3/Na (2.4), THF, -78°, 15 min ^c	R ¹ X	CO ₂ H 1 OMe	
R = H		MeC=CHCH2I	I, $\mathbb{R}^1 = \text{MeCOCH}_2\text{CH}_2$ (74)	149
		EtC=CHCH ₂ I SiMe ₃	I, $\mathbb{R}^1 = \text{EtCOCH}_2\text{CH}_2$ (74)	149
R = Me	NH3/M (2.2 - 2.5), t-BuOH (1), THF, -78°, 15-30 min ^c	R ¹ X	OMe R ¹ CO ₂ Me I OMe	
	M = K	MeI	I (96)	134, 152
	M = Li	$CH_2 = CHCH_2CH_2Br$	1 (61)	151

288
Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	M = K	MeCHCH2CH2I	I (97)	149
	M = K	LDA, MeC=CHCH2I OSiMe3	$I, R^1 = MeCOCH_2CH_2 (80)$	149
	M = K	LDA, EtC=CHCH2I OSiMe3	$I, R^1 = EtCOCH_2CH_2 (82)$	149
	M = K, + LiBr	MeCHCH2CH2I OSiMe3	" (ca 100)	591
	M = K, + LiBr8	EtCHCH2CH2I OSiMe3	" (ca 100)	591
	M = K	MeO ₂ C CH ₂ Br ^e	" (67)	152

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
MeO CO ₂ I OMe	R NH3/Li (2.5), THF, -78°, 20 min ^c	R ¹ X	MeO R ¹ CO ₂ R I OMe	
R = H		MeI	1 (87)	592, 59
		EtBr	I (50)	594
		n-C5H11Br	I (ca 100)	136
		Me ₂ C = CHCH ₂ I	I (87)	583
		2-CO2Me-3-MeO- C6H3CH2I ^e	I (87)	586
		MeC=CHCH2I SiMe3	I, $\mathbb{R}^1 = MeCOCH_2CH_2$ (79)	149
		EtC=CHCH ₂ I SiMe ₃	I, $\mathbb{R}^1 = \text{EtCOCH}_2\text{CH}_2$ (79)	149

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
R = Me	NH3/Li (2.2), <i>t</i> -BuOH (1), -78°, THF, 20 min ^c	MeÇ=CHCH ₂ I OSiMe ₃	I, $R^1 = MeCOCH_2CH_2$ (84)	149
		EtC=CHCH ₂ I SiMe ₃	$I, R^1 = EtCOCH_2CH_2 (87)$	149
		MeOC=CHCH ₂ I § OSiMe ₃	I, $\mathbb{R}^1 = MeOCOCH_2CH_2$ (87)	149
JOMe OMe	NH ₃ /K (2.2), t-BuOH (1.2), THF, -78°, 10 min, LiBr ^g	Mel ^h	O (89*) OMe	83
OMe	w		$O + OH$ $(16^*) + starting material OMe (37^*)$	5 83 J

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OMe		RI ⁱ		
		MeI	I (92)	595, 83
		CH ₂ = CHCH ₂ I	I (95)	595
		i-PrI	1 (76)	595
CO ₂ H NMe ₂	NH3/Li (2.5)	RX, H ₃ O ⁺ , heat		
		MeI	I (45*)	131
		Etl	1 (70*)	131
		i-PrBr	I (55*)	131
		$CH_2 = CHCH_2Br$	I (65*)	131
		PhCH ₂ Br	I (80*)	131

	Reactant		Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
C ₁₀ R ²	R^1 R^3)	NH3/K (2.5), t-BuOH (2), THF, -78°, LiBr,8 20 min	RX ⁱ	R^2 R^1 R^0 R^3 R^3	
<u>R</u> 1	B ²	<u>R</u> ³				
OMe	н	н		MeI	I (—)	596
н	н	OMe			I (75)	107, 59
н	OMe	н			I (78)	107, 593
				EtI	I ()	108
				$CH_2 = CHCH_2I$	I ()	108
				EtO2CCH2Br	I ()	108
				$EtC \equiv CCH_2Br$	I (—)	108
				$Me(CH_2)_4C \equiv CCH_2Br$	1 ()	108
				PhCH ₂ Br	I (83)	598

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
		CH2=CBrCH2Br, H3O+	Br (68)	105
OMe CO ₂ H Pr- <i>i</i>	NH3/Li, THF, -78°	PhOCH2CH2Br, ^d H3O+	OPh Pr-i (55)	135
CO ₂ Me SiMe ₃	NH3/Na, 1-BuOH, -78°	MeI, NH4Cl	CO ₂ Me SiMe ₃ (67)	3j

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
	" + FeCl3		II (60*) + 2-naphthoic acid (10*)	84
CO ₂ H OMe	NH3/Li (3), 30 min		$I (25^*) + Ome Ome (65^*)$	84
	NH3/Li (5), 30 min		I (25*) + III (55*)	84
	" + FeCl3		IV (75*)	84
OMe CO ₂ H	NH3/Li (3), 30 min	а 1	$I (22^*) + OMe (65^*)$	84
	NH3/Li (5) 30 min		I (24*) + III (60*)	84
	" + FeCl3		V (78*)	84

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

304

1	Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
		K(6), THF, 30 min		MeO (85)	112
C ₁₆ MeO F	H	Li/NH ₃ , THF, 25 min		MeO H (50) R H R ^H	132
C ₂₀ MeO	H R	$\frac{1}{2}$	Mel	MeO R	
	R = CO ₂ H	Na/NH3	÷.	()	602
	$R = CO_2Me$	NH3/Na, -70°		(61)	603

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

306

TABLE XII. REDUCTIVE ALKYLATION OF BIFUNCTIONAL AROMATIC COMPOUNDS (Continued)

^a After addition of alkyl halide, the resulting yellow solution was stirred for 1 h at -78° . It is essential to quench the alkylation reaction mixture with excess NH₄Cl before evaporation of ammonia.

^b An ammonia-THF solution of this compound was treated with 1 equiv of t-BuOK before normal Birch reduction. Pretreatment with one equiv of base completely prevents hydrogenolysis in most cases.

c Before alkylation 1,3-pentadiene (2-3 drops) was added to the reaction mixture to destroy excess metal.

^d Alkyl halide and 1,2-dibromoethane were added in one portion to the reaction mixture.

^e The ammonia was removed before alkylation.

f The resulting 1,4-dihydro derivative was subsequently alkylated by treatment with lithium diisopropylamide (LDA) at -78° (0.5 h, THF) followed by alkyl halide.

8 The resulting blue solution was mixed with anhydrous lithium halide and stirred at -78° for 40 min.

^h The ammonia was evaporated during 1-4 h and the resulting pasty mixture was alkylated by adding alkyl halide and stirring the mixture at $0-10^{\circ}$ for 40 min.

ⁱ After 20 min alkyl halide and aqueous THF (1:1) were added simultaneously to the reaction mixture.

j Metal was added to the reaction mixture in small portions over 2 h.

k The yield represents a mixture of *cis* and *trans* isomers.

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs
C ₆ NH ₂	Li (4)/NH3, <i>1</i> -BuOH, 1 h	H2O, H3O+	(27) + (42)	168
	NH3/Li, t-BuOH (1), THF, -78°	RX, NH4Cla		157
		Cl(CH ₂) ₃ Br	I (83)	
		PhCH ₂ Br	I (73)	
		2-MeOC ₆ H ₄ CH ₂ Br	I (67)	
		H ₂ O	(90)	

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
NH ₂	Li (4)/NH3, 7-BuOH, 1 h	H2O, H3O+	(18) + (50)	168
C ₈ NMe ₂	NH3/Na, EtOH		(57)	167
	NH3/Li (5), 1-BuOH, THF, 80 min	EtOH	NMe ₂ (87*)	169
C9 HO	Li ^b /NH ₃ , THF, -40 to -50°	EtOH¢	HO (70*)	166

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

Reactant	Reduction Conditions	Quenching Agent	Product(s) and Yield(s) (%)	Refs.
OH	NH3/Li (3), 1 h	EtOH, H3O+	OH (97-99)	605, 6
NH ₂	Na/NH3	NH4Br	NH ₂ ()	607
но	Li ^b /NH ₃ , THF, -40 to -50°	EtOH¢	НО (76*)	166
MeO CH(OMe) ₂	NH3/Na, EtOH	H ₂ O	MeO CH(OMe) ₂ (30)	117

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

314

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

TABLE XIII. MISCELLANEOUS REDUCTION AND REDUCTIVE ALKYLATION OF AROMATIC COMPOUNDS (Continued)

^a After addition of alkyl halide the yellow solution was stirred for 1 h at -78°. It is essential to quench the alkylation reaction mixture with excess NH₄Cl before evaporation of ammonia.

^b The reaction was performed with a high concentration of lithium in ammonia (ca 4 M).

^c Ethanol was added to the reaction mixture at 30-min intervals until the solution was decolorized (ca. 1.75 h).

^d Slightly better yields were obtained if the naphthoxide anion was formed by reaction of the substrate with sodium hydride before addition to a solution of the metal in ammonia.

7. Acknowledgments

We thank the Division of Chemical Sciences, Office of Basic Energy Sciences of the U.S. Department of Energy for financial support. We are also eternally grateful to Sharon Fricke who prepared the manuscript. Finally, special thanks to Professor Ronald G. Harvey.

References

- 1. C. B. Wooster and K. L. Godfrey, J. Am. Chem. Soc., 1937, 59, 596.
- 2. (a) A. J. Birch, J. Chem. Soc., 1944, 430. (b) For a complete list of Birch's contributions, see Tetrahedron, **44**, No. 10, pp. V–XVIII (1988).
- A number of reviews have appeared. For example, see (a) A. J. Birch, Quart. Rev., Chem. Soc., 1950, 4, 69. (b) A. J. Birch and H. Smith, ibid., 1958, 7, 17. (c) H. Smith, Organic Reactions in Liquid Ammonia, Vol. 1, Part 2, Wiley-Interscience, New York, 1963. (d) W. Hückel, Fortschr. Chem. Forsch, 1966, 6, 197. (e) M. Smith, in Reduction: Techniques and Applications in Organic Synthesis, R. L. Augustine, Ed., Marcel Dekker, New York, 1968. (f) R. G. Harvey, Synthesis, 1970, 161. (g) A. J. Birch and G. S. R. Subba Rao, in Advances in Organic Chemistry, Methods and Results, E. C. Taylor, Ed., Wiley-Interscience, New York, 1972, pp. 1–65. (h) P. W. Rabideau, Tetrahedron, 1989, 45, 1579. (i) D. Caine, Org. React., 1976, 23, 1. (j) For applications to natural product synthesis, see J. M. Hook and L. N. Mander, Natural Prod. Rep., 1986, 3, 35. (k) For application to carbonyl compounds see J. W. Huffman, Acc. Chem. Res., 1983, 16, 399; S. K. Pradhan, Tetrahedron, 1986, 42, 6351.
- 4. A. L. Wilds and N. A. Nelson, J. Am. Chem. Soc., 1953, 75, 5360.
- 5. W. Hückel and H. Bretschneider, Justus Liebigs Ann. Chem., 1939, **540**, 157.
- 6. See reference 3 for a number of synthetic applications.
- For a more detailed description of metal–ammonia solutions, see, for example, *The Chemistry of Nonaqueous Solvents*, J. L. Lagowski, Ed., Vol. 2, Academic Press, New York, 1967, pp. 265–317.
- 8. See reference 3h for a recent review of the mechanistic aspects of this reaction.
- 9. The protonation of radical anions by ammonia is not considered likely because of their relatively low basicity. (10)
- 10. M. Szwarc, Ed., *Ions and Ion Pairs in Organic Chemistry*, Vol. **2**, Wiley-Interscience, New York, 1974.
- 11. P. W. Rabideau and E. G. Burkholder, J. Org. Chem., 1978, 43, 4283.
- 12. A. Streitwieser, Jr., C. M. Berke, and K. Robbers, J. Am. Chem. Soc., 1978, **100**, 8271.
- 13. A. Streitwieser, Jr., Acc. Chem. Res., 1984, 17, 353.
- 14. T. D. Walsh, J. Am. Chem. Soc., 1987, 109, 1511.
- 15. O. R. Brown, R. J. Butterfield, and J. P. Millington, Electrochim. Acta, 1982, **27**, 1655.
- 16. A series of papers providing an excellent discussion of the regiochemistry in the Birch reduction of benzenes, including 1,3 vs. 1,4 products as well

as the effect of substituent groups, has appeared. (17-20)

- 17. A. J. Birch, A. L. Hinde, and L. Radom, J. Am. Chem. Soc., 1980, **102**, 3370.
- A. J. Birch, A. L. Hinde, and L. Radom, J. Am. Chem. Soc., 1980, 102, 4074.
- 19. A. J. Birch, A. L. Hinde, and L. Radom, J. Am. Chem. Soc., 1980, **102**, 6430.
- 20. A. J. Birch, A. L. Hinde, and L. Radom, J. Am. Chem. Soc., 1981, **103**, 284.
- 21. For a more detailed discussion, see reference 3h, and also P. W. Rabideau and D. L. Huser, J. Org. Chem., 1983, **48**, 4266.
- P. W. Rabideau and A. Sygula, in *The Conformational Analysis of Cyclohexenes, Cyclohexadienes and Related Hydroaromatics*, P. W. Rabideau, Ed., VCH, New York, 1989, Ch. 3.
- 23. A. Streitwieser, Jr., *Molecular Orbital Theory for Organic Chemists*, Wiley, New York, 1961.
- 24. H. E. Zimmerman, Tetrahedron, 1961, 16, 169.
- 25. M. J. S. Dewar, J. A. Hashmall, and N. Trinajstic, J. Am. Chem. Soc., 1970, **92**, 5555.
- 26. V. Parker, J. Am. Chem. Soc., 1976, 98, 98.
- 27. K. Müllen, W. Huber, G. Neumann, C. Scheiders, and H. Unterberg, J. Am. Chem. Soc., 1985, **107**, 801.
- 28. P. W. Rabideau, A. J. Maxwell, and A. Sygula, J. Org. Chem., 1986, **51**, 3181.
- P. W. Rabideau, N. K. Peters, and D. L. Huser, J. Org. Chem., 1981, 46, 1593.
- 30. E. W. Garbisch, Jr. and M. G. Griffith, J. Am. Chem. Soc., 1968, 90, 117.
- 31. Z. Marcinow and P. W. Rabideau, Louisiana State University, unpublished results.
- 32. C. Eaborn, R. A. Jackson, and R. Pearce, J. Chem. Soc., Perkin Trans. 1, 1974, 2055.
- 33. P. W. Rabideau, L. M. Day, C. A. Husted, J. L. Mooney, and D. M. Wetzel, J. Org. Chem., 1986, **51**, 1681.
- 34. This has been demonstrated by variable temperature NMR. (33)
- 35. P. P. Fu, R. G. Harry, J. W. Paschal, and P. W. Rabideau, J. Am. Chem. Soc., 1975, **97**, 1145. See also P. W. Rabideau and E. G. Burkholder, J. Org. Chem., 1979, **44**, 2354.
- 36. P. W. Rabideau, D. M. Wetzel, C. A. Husted, and J. R. Lawrence, Tetrahedron Lett., 1984, **25**, 31.
- 37. A. Sygula and P. W. Rabideau, J. Org. Chem., 1987, 52, 3521.

- 38. P. W. Rabideau and R. G. Harvey, J. Org. Chem., 1970, 35, 25.
- A. G. Schultz, M. Macielag, P. Sundararaman, A. Taveras, and M. Welch, J. Am. Chem. Soc., 1988, **110**, 7828.
- 40. M. N. Paddon-Row, Acc. Chem. Res., 1982, **15**, 245 and references cited therein.
- 41. R. Hoffman, Acc. Chem. Res., 1971, 4, 1.
- 42. G. Goto, K. Yoshioka, K. Hiraga, M. Masuoka, R. Nakayama, and T. Miki, Chem. Pharm. Bull., 1978, **26**, 1718.
- 43. E. Cotsaris and M. N. Paddon-Row, J. Chem. Soc., Perkin Trans. 2, 1984, 1487.
- 44. T. Kametani, T. Toya, M. Tsubuki, K. Kawai, and T. Honda, Chem. Pharm. Bull., 1986, **34**, 3169.
- 45. W. S. Johnson, R. Pappo, and W. F. Johns, J. Am. Chem. Soc., 1956, **78**, 6339.
- 46. D. W. MacSweeney and R. Ramage, Tetrahedron, 1971, 27, 1481.
- 47. E. Fujita and M. Ochiai, Chem. Pharm. Bull., 1978, 26, 264.
- 48. D. J. Humphreys, P. M. Lawrence, C. E. Newall, G. H. Phillips, and P. A. Wall, J. Chem. Soc., Perkin Trans. 1, 1978, 24.
- 49. J. Runge, Z. Chem., 1962, 2, 374; J. Prakt. Chem., [4] 1966, 31, 280.
- 50. R. G. Harvey, J. Org. Chem., 1967, 32, 238.
- 51. R. G. Harvey and K. Urberg, J. Org. Chem., 1968, 33, 2570.
- 52. P. W. Rabideau and R. G. Harvey, Tetrahedron Lett., 1970, 4139.
- 53. A. A. Akhrem and Y. A. Titov, *Total Steroid Synthesis*, Plenum, New York, 170.
- 54. F. J. Kakis, in *Steroid Reactions*, C. Djerassi, Ed., Holden Day, San Francisco, 1963, pp. 267–298.
- 55. E. Ottow, S. Beier, W. Elger, D. Henderson, G. Neef, and R. Wiechert, Steroids, 1984, **44**, 519.
- 56. G. Schubert, K. Ponsold, and U. Eibisch, Pharmazie, 1984, 39, 92.
- 57. D. K. Phillips, P. P. Wickam, G. O. Potts, and A. Arnold, J. Med. Chem., 1968, **11**, 924.
- 58. K. J. Sax, R. H. Blank, R. H. Evands, L. I. Feldman and C. E. Holmland, J. Org. Chem., 1964, **29**, 2351.
- 59. H. L. Holland and G. J. Taylor, Can. J. Chem., 1981, 59, 2809.
- 60. H. Baier, G. Duerner, and G. Quinkert, Helv. Chim. Acta, 1985, 68, 1054.
- 61. S. J. Brandes and J. A. Katzenellenbogen, Mol. Pharmacol., 1987, **32**, 391.
- 62. C. C. Bolt and F. J. Zeelen, Recl. Trav. Chim. Pays-Bas, 1973, 92, 1267.
- 63. G. Amiard, R. Heymes, and T. Von Thoung, Bull. Soc. Chim. Fr., 1972,

272.

- 64. See reference 42.
- 65. G. S. R. Subba Rao and N. S. Sundar, Indian J. Chem., Sect. B, 1977, **15B**, 585.
- 66. T. Kametani, K. Suzuki, and H. Nemoto, Tetrahedron Lett., 1980, **21**, 1469.
- 67. Z. P. Zhuang and W. S. Zhou, Tetrahedron, 1985, 41, 3633.
- 68. B. Aweryn and A. R. Daniewski, Pol. J. Chem., 1980, 54, 251.
- 69. F. E. Ziegler and T. F. Wang, J. Am. Chem. Soc., 1984, 106, 718.
- 70. R. B. Garland, J. R. Palmer, and R. Pappo, J. Org. Chem., 1976, 41, 531.
- 71. G. Goto, K. Yoshioka, K. Hiraga, and T. Miki, Chem. Pharm. Bull., 1977, 1295.
- 72. G. Neef, U. Eder, G. Haffer, G. Sauer, and R. Wiechert, Chem. Ber., 1980, **113**, 1106.
- 73. R. Joly, J. Warnant, J. Jolly, and A. Farcilli, Bull. Soc. Chim. Fr., 1973, 2694.
- 74. C. G. Pitt, D. H. Rector, C. E. Cook, and M. C. Wani, J. Med. Chem., 1979, **22**, 966.
- 75. H. J. J. Loozen and M. S. DeWinter, Recl. Trav. Chim. Pays-Bas, 1980, **99**, 311.
- R. J. Marshall, I. McIndewar, J. A. M. Peters, N. P. van Vliet, and F. J. Zeelen, Eur. J. Med. Chem. Chim. Ther., 1984, 19, 43.
- 77. D. K. Banerjee and P. R. Srinivasan, Indian J. Chem., 1972, **10**, 891.
- 78. A. Sandoval, G. H. Thomas, C. Djerassi, G. Rosenkranz, and F. Sondheimer, J. Am. Chem. Soc., 1955, **77**, 148.
- 79. H. Nemoto, M. Nagai, F. Fukumoto, and T. Kametani, Tetrahedron Lett., 1985, **26**, 4613.
- 80. See reference 2a.
- W. S. Johnson, B. Bannister, and R. Rappo, J. Am. Chem. Soc., 1956, 78, 6331.
- R. B. Turner, K. H. Gänshirt, P. E. Shaw, and J. D. Tauber, J. Am. Chem. Soc., 1966, 88, 1776.
- 83. M. Narisada and F. Watanabe, J. Org. Chem., 1973, 38, 3887.
- A. R. Murthy, N. S. Sundar, and G. S. R. Subba Rao, Tetrahedron, 1982, 38, 2831.
- 85. A. J. Birch and G. S. R. Subba Rao, Aust. J. Chem., 1970, 23, 1641.
- 86. R. C. Cambie and A. W. Missen, Aust. J. Chem., 1972, 25, 973.
- 87. T. L. Macdonald, J. Org. Chem., 1978, 43, 3621.
- 88. A. J. Birch, J. Chem. Soc., 1950, 1551.

- K. Pramod, H. Ramanathan, and G. S. R. Subba Rao, J. Chem. Soc., Perkin Trans. 1, 1983, 7.
- 90. F.-H. Koster and H. Wolf, Tetrahedron Lett., 1981, 22, 3937.
- 91. P. M. Bishop, J. R. Pearson, and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1983, 123.
- 92. J. Orban and J. V. Turner, Tetrahedron Lett., 1983, 24, 2697.
- J. Amupitan and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1978, 852.
- 94. J. Amupitan, E. Hug, M. Mellor, E. G. Scovell, and J. K. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1983, 747.
- 95. A. J. Birch and K. P. Dastur, Tetrahedron Lett., 1972, 41, 4195.
- 96. A. J. Birch and K. P. Dastur, J. Chem. Soc., Perkin Trans. 1, 1973, 1650.
- 97. D. A. Evans, W. L. Scott, and L. K. Truesdale, Tetrahedron Lett., 1972, 121.
- D. A. Evans, W. L. Scott, and L. K. Truesdale, Tetrahedron Lett., 1972, 137.
- 99. W. L. Scott and D. A. Evans, J. Am. Chem. Soc., 1972, 94, 4779.
- 100. M. A. Qassem, N. A. J. Rogers, and A. A. Othman, Tetrahedron, 1968, 24, 4535.
- 101. A. R. Pinder and H. Smith, J. Chem. Soc., 1954, 113.
- 102. (a) S. S. Hall, S. D. Lipsky, F. J. McEnroe, and A. P. Bartels, J. Org. Chem., 1971, **36**, 2588. (b) S. S. Hall, S. D. Lipsky, and G. H. Small, Tetrahedron Lett., 1971, 1853.
- 103. Z. Marcinow and P. W. Rabideau, J. Org. Chem., 1988, 53, 2117.
- 104. J. M. Brown, T. M. Cresp, and L. N. Mander, J. Org. Chem., 1977, **42**, 3984.
- 105. N. N. Marinovic and H. R. Ramanathan, Tetrahedron Lett., 1983, 24, 1871.
- 106. R. McCaque, C. J. Moody, and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1983, 2399.
- 107. Z. Lidert, R. McCaque, C. J. Moody, and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1985, 383.
- 108. C. J. Moody and J. Toczek, Tetrahedron Lett., 1986, 27, 5253.
- 109. S. Mejer and Z. Marcinow, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1976, 24, 175 [C. A., 85, 94121v (1976)].
- 110. S. Mejer and R. Pacut, Pol. J. Chem., 1978, 52, 529.
- 111. G. S. R. Subba Rao and N. S. Sundar, J. Chem. Soc., Perkin Trans. 1, 1982, 875.
- 112. N. S. Sundar and G. S. R. Subba Rao, J. Chem. Soc., Perkin Trans. 1, 1982, 1381.

- 113. P. W. Rabideau, C. H. Husted, and D. M. Young, J. Org. Chem., 1983, 48, 4149.
- 114. S. Mejer, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1962, **10**, 469 [C. A., **59**, 1554 (1963)].
- 115. S. Mejer, Z. Marcinow, and S. Respondek, Pol. J. Chem., 1980, 54, 2247.
- 116. A. J. Birch and G. S. R. Subba Rao, Aust. J. Chem., 1970, 23, 547.
- 117. K. S. J. Stapleford, Synth. Commun., 1982, 23, 651.
- 118. A. J. Birch and K. P. Dastur, Aust. J. Chem., 1973, 26, 1363.
- 119. See reference 3a.
- 120. M. E. Kuehne and B. F. Lambert, J. Am. Chem. Soc., 1959, 81, 4278.
- 121. H. Plieninger and G. Ege, Angew. Chem., 1958, 70, 505.
- 122. F. Camps, J. Coll, and J. Pascual, J. Org. Chem., 1967, 32, 2563.
- 123. H. van Bekkum, C. B. van den Bosch, G. van Minnen-Pathuis, J. C. de Mos, and A. M. van Vijk, Recl. Trav. Chim. Pays-Bas, 1971, 90, 137.
- 124. G. S. R. Subba Rao, K. Raj, and H. Ramanathan, J. Chem. Soc., Chem. Commun., 1980, 315.
- 125. W. J. Sipio, Tetrahedron Lett., 1985, 26, 2039.
- 126. G. W. Holbert and B. Ganem, J. Am. Chem. Soc., 1978, 100, 352.
- 127. J. V. Turner, B. F. Anderson, and L. N. Mander, Aust. J. Chem., 1980, **33**, 1061.
- 128. A. J. Birch, P. Hextall, and S. Sternhell, Aust. J. Chem., 1954, 7, 256.
- 129. O. L. Chapman and P. Fitton, J. Am. Chem. Soc., 1963, 85, 41.
- 130. M. E. C. Biffin, A. G. Mortiz, and D. B. Paul, Aust. J. Chem., 1972, **25**, 1329.
- 131. A. J. Birch, J. Slobbe, Aust. J. Chem., 1977, **30**, 1045.
- 132. H. O. House, R. C. Strickland, and E. J. Zaiko, J. Org. Chem., 1976, **41**, 2401.
- 133. A. L. Cossey, M. J. Gunter, and L. N. Mander, Tetrahedron Lett., 1980, **21**, 3309.
- 134. J. M. Hook, L. N. Mander, and M. Woolias, Tetrahedron Lett., 1982, 23, 1095.
- 135. D. F. Taber and R. W. Korsmeyer, J. Org. Chem., 1978, 43, 4925.
- 136. A. J. Birch and J. Slobbe, Tetrahedron Lett., 1976, 2079.
- 137. J. Slobbe, J. Chem. Soc., Chem. Commun., 1977, 82.
- 138. J. L. Marshall and T. K. Folsom, J. Org. Chem., 1971, 36, 2011.
- 139. P. W. Rabideau, E. G. Burkholder, and M. J. Yates, Synth. Commun., 1980, **10**, 627.
- 140. M. C. Gossel and R. C. Hayward, J. Chem. Soc., Perkin Trans. 2, 1976, 851.

- 141. J. Slobbe, Aust. J. Chem., 1978, 31, 1157.
- 142. G. S. R. Subba Rao, A. R. K. Murthy, and N. S. Sundar, Indian J. Chem., 1978, **16B**, 1027.
- 143. L. N. Mander and S. G. Pyne, Aust. J. Chem., 1981, 34, 1899.
- 144. D. J. Beames, J. A. Halleday, and L. N. Mander, Aust. J. Chem., 1972, **25**, 137.
- 145. D. Franks, M. C. Grossel, R. Hayward, and L. J. S. Knutsen, J. Chem. Soc., Chem. Commun., 1978, 941.
- 146. P. W. Rabideau, S. J. Nyikos, D. L. Huser, and E. G. Burkholder, J. Chem. Soc., Chem. Commun., 1980, 210.
- 147. P. W. Rabideau, D. L. Huser, and S. J. Nyikos, Tetrahedron Lett., 1980, **21**, 1401.
- 148. A. L. Cossey, L. N. Mander, and S. G. Pyne, Aust. J. Chem., 1979, **32**, 817.
- 149. R. J. Hamilton, L. N. Mander, and S. P. Sethi, Tetrahedron, 1981, **42**, 2881.
- 150. A. G. Schultz and S. Puig, J. Org. Chem., 1985, **50**, 915.
- 151. A. G. Schultz, M. Plummer, A. G. Taveras, and R. K. Kullnig, J. Am. Chem. Soc., 1988, **110**, 5547.
- 152. A. G. Schultz, J. P. Dittami, F. P. Lavieri, C. Salowey, P. Sundararaman, and M. B. Szymula, J. Org. Chem., 1984, 49, 4429.
- 153. A. J. Birch, J. Cymerman-Craig, and M. Slaytor, Aust. J. Chem., 1955, 8, 512.
- 154. R. Furstoss, G. Esposito, P. Teissier, and B. Waegell, Bull. Soc. Chim. Fr., 1974, 2485.
- 155. L. Dickson, C. A. Matuszak, and A. H. Qazi, J. Org. Chem., 1978, **43**, 1007.
- 156. A. Mann, C. Humblet, J. P. Chambon, R. Schlichter, M. Desarmenien, P. Feltz, and C. G. Wermuth, J. Med. Chem., 1985, 28, 1440.
- 157. A. G. Schultz and M. Macielag, J. Org. Chem., 1986, 51, 4983.
- 158. A. G. Schultz and P. Sundararaman, Tetrahedron Lett., 1984, 25, 4591.
- 159. A. G. Schultz, P. Sundararaman, M. Macielag, F. P. Lavieri, and M. Welch, Tetrahedron Lett., 1985, **26**, 4575.
- 160. A. G. Schultz, P. J. McCloskey, P. Sundararaman, and J. P. Springer, Tetrahedron Lett., 1985, **26**, 1619.
- 161. P. J. McCloskey and A. G. Schultz, Heterocycles, 1987, 25, 437.
- 162. A. G. Schultz, P. J. McCloskey, and J. J. Court, J. Am. Chem. Soc., 1987, **109**, 6493.
- 163. P. J. McCloskey and A. G. Schultz, J. Org. Chem., 1988, 53, 1380.
- 164. A. G. Schultz, M. Macielag, D. E. Podhorez, J. C. Suhadolnik, and R. K.

Kullnig, J. Org. Chem., 1988, 53, 2456.

- 165. A. J. Birch and G. S. R. Subba Rao, Tetrahedron Lett., 1967, 857.
- 166. J. Fried, N. A. Abraham, and T. S. Santhanakrishnan, J. Am. Chem. Soc., 1967, **89**, 1044.
- 167. A. J. Birch, J. Chem. Soc., 1946, 593.
- 168. G. Stork and W. N. White, J. Am. Chem. Soc., 1956, **78**, 4604.
- 169. A. J. Birch, E. G. Hutchinson, and G. Subba Rao, J. Chem. Soc. C, 1971, 637.
- 170. For a recent discussion of this effect, see J. P. Gilday, J. C. Gallucci, and L. A. Paquette, J. Org. Chem., 1989, **54**, 1399.
- 171. C. Eaborn, D. R. M. Walton, and G. Seconi, J. Chem. Soc., Perkin Trans. 2, 1976, 1857.
- 172. P. W. Rabideau and G. L. Karrick, Tetrahedron Lett., 1987, 28, 2481.
- 173. P. W. Rabideau and Z. Marcinow, Tetrahedron Lett., 1988, 29, 3761.
- 174. Z. Marcinow, D. K. Clawson, and P. W. Rabideau, Tetrahedron, 1989, 45, 5441.
- 175. D. W. Jessup, J. W. Paschal, and P. W. Rabideau, J. Org. Chem., 1977, **42**, 2620.
- 176. (a) For a review, see: L. M. Stock, in *Coal Science*, Vol. 1, M. L. Gorbaty, J. W. Larson, and I. Wender, Eds., Academic Press, New York, 1982. (b) R. H. Fish and J. W. Dupon, J. Org. Chem., 1988, **53**, 5230.
- 177. E. Grovenstein, Jr., A. M. Bhatti, D. E. Quest, D. Sengupta, and D. van Derveer, J. Am. Chem. Soc., 1983, **105**, 6290.
- 178. W. E. Bachmann, J. Am. Chem. Soc., 1933, 55, 3005.
- 179. K. Ziegler and F. Thielmann, Chem. Ber., 1953, 56, 1740.
- 180. J. B. Conant and B. S. Garvey, Jr., J. Am. Chem. Soc., 1927, 49, 2599.
- 181. J. J. Eisch, J. Org. Chem., 1963, 28, 707.
- 182. C. J. Collins, H.-P. Hombach, B. Maxwell, M. C. Woody, and B. M. Benjamin, J. Am. Chem. Soc., 1980, **102**, 851. C. J. Collins, H.-P. Hombach, B. E. Maxwell, B. M. Benjamin, and D. McKamey, J. Am. Chem. Soc., 1981, **103**, 1213.
- 183. A. Lagendijk and M. Szware, J. Am. Chem. Soc., 1971, 93, 5359.
- 184. R. R. Chambers, Jr., C. J. Collins, and B. E. Maxwell, J. Org. Chem., 1985, **50**, 4960. See also reference 181.
- 185. T. D. Walsh and T. L. Megremis, J. Am. Chem. Soc., 1981, 103, 3897. T.
 D. Walsh, J. Am. Chem. Soc., 1987, 109, 1511.
- 186. C. B. Wooster, J. Am. Chem. Soc., 1934, **56**, 2436.
- 187. P. W. Rabideau, D. W. Jessup, J. W. Ponder, and G. F. Buckman, J. Org. Chem., 1979, 44, 4594.

- 188. Z. Marcinow, C. E. Hull, and P. W. Rabideau, J. Org. Chem., 1989, **54**, 3602.
- 189. A. Streitwieser, Jr. and S. Suzuki, Tetrahedron, 1961, 16, 153.
- 190. J. J. deVlieger, A. P. G. Kieboom, and H. van Bekkum, J. Org. Chem., 1986, **51**, 1389.
- 191. For a review, see E. M. Kaiser, Synthesis, 1972, 391.
- 192. R. A. Benkeser, R. E. Robinson, D. M. Sauve, and O. H. Thomas, J. Am. Chem. Soc., 1955, **77**, 3230.
- 193. R. A. Benkeser and E. M. Kaiser, J. Org. Chem., 1964, 29, 955.
- 194. J. D. Brooks, R. A. Durie, and H. Silberman, Aust. J. Chem., 1964, 17, 55.
- 195. L. Reggel, S. Friedman, and L. Wender, J. Org. Chem., 1958, 23, 1136.
- 196. R. A. Benkeser, F. G. Belmonte, and M.-H. Yang, Synth. Commun., 1983, 13, 1103.
- 197. R. A. Benkeser, J. A. Laugal, and A. Rappa, Tetrahedron Lett., 1984, **25**, 2089.
- 198. For some examples, see K. Müllen, Angew. Chem., Int. Ed. Engl., 1987, **26**, 204.
- 199. E. Grovenstein, Jr., T. H. Longfield, and D. E. Quest, J. Am. Chem. Soc., 1977, **99**, 2800.
- 200. J. L. Dye, Angew. Chem., Int. Ed. Engl., 1979, 18, 587.
- 201. D. J. Mathre and W. C. Guida, Tetrahedron Lett., 1980, 21, 4773.
- 202. See reference 176b.
- 203. K. C. Bass, Org. Synth., Coll. Vol. 5, 1973, 398.
- 204. D. R. Weyenberg and L. H. Toporcer, J. Am. Chem. Soc., 1962, 84, 2843.
- 205. M. Laguerne, J. Dunogués, R. Calas, and N. Duffaut, J. Organomet. Chem., 1976, **112**, 49.
- 206. M. Laguerne, J. Dunogués, R. Calas, and N. Duffaut, J. Organomet. Chem., 1975, **93**, C17.
- 207. A. G. Barnett, J. Org. Chem., 1988, 53, 1815.
- 208. (a) J. Dunogués, R. Calas, and N. Ardoin, J. Organomet. Chem., 1972,
 43, 127. (b) M. Keil and F. Effenberger, Chem. Ber., 1982, 115, 1103.
- 209. A. G. Barnett, J. Org. Chem., 1984, 49, 4409.
- 210. D. R. Weyenberg and L. H. Toporcer, J. Org. Chem., 1965, 30, 943.
- 211. L. Birkofer and N. Ramadan, Chem. Ber., 1971, 104, 138.
- 212. M. Laguerne, J. Dunogués, and R. Calas, Tetrahedron Lett., 1981, 22, 1227.
- 213. J. Dunogués, R. Calas, C. Brian, and N. Duffaut, J. Organomet. Chem., 1970, 23, C50.
- 214. (a) C. K. Mann and K. K. Barnes, Electrochemical Reactions in

Nonaqueous Systems, Marcel Dekker, Inc., NY, 1970, Ch. "2". (b) H. Lund, in *Organic Electrochemistry*, M. M. Baizer and H. Lund, Eds., Marcel Dekker, NY, 1983.

- 215. For a recent review, see E. Kariv-Miller, R. I. Pacut, and G. K. Lehman, Topics Curr. Chem., 1988, **148**, 97.
- 216. R. A. Benkeser, E. M. Kaiser, and R. F. Lambert, J. Am. Chem. Soc., 1964, **86**, 5272.
- 217. R. I. Pacut and E. Kariv-Miller, J. Org. Chem., 1986, 51, 3468.
- 218. E. Kariv-Miller, K. E. Swenson, G. K. Lehman, and R. Andruzzi, J. Org. Chem., 1985, **50**, 556.
- 219. For reviews, see (a) M. Smith in Augustine, *Reduction Techniques and Applications in Organic Synthesis*, Marcel Dekker, NY, 1968, pp. 309–395. (b) E. L. Muetterties and J. R. Bleeke, Acc. Chem. Res., 1979, 12, 324. (c) M. Bennett, CHEMTECH, 1980, 10, 444.
- 220. P. P. Fu, H. M. Lee, and R. G. Harvey, J. Org. Chem., 1980, 45, 2797.
- 221. M. K. Faber, O. Fussa-Rydel, J. B. Skowyra, L. E. H. McMills, and J. L. Dye, J. Am. Chem. Soc., 1989, **111**, 5957.
- 222. M. Fieser and L. F. Fieser, *Reagents for Organic Synthesis*, Vol. 1, New York, 1967.
- 223. L. A. Paquette and J. H. Barnett, Org. Synth., Coll. Vol. 5, 1973, 467.
- 224. *This reaction has been performed numerous times by the authors.* See reference 11 for general procedures.
- 225. R. G. Harvey and K. Urberg, J. Org. Chem., 1968, 33, 2206.
- 226. H. Nemoto, M. Nagai, K. Fukumoto, and T. Kametani, J. Chem. Soc., Perkin Trans. 1, 1986, 1621.
- 227. A. Manmade, J. L. Marshall, R. A. Minns, H. Dalzell, and R. K. Razdan, J. Org. Chem., 1982, **47**, 1717.
- 228. S. Danishefsky and P. Cain, J. Org. Chem., 1975, 40, 3606.
- 229. P. W. Rabideau, D. M. Wetzel, and D. M. Young, J. Org. Chem., 1984, **49**, 1544.
- 230. W. Hückel and U. Wörfall, Chem. Ber., 1955, 88, 338.
- 231. J. P. Wibaut and F. A. Haak, Recl. Trav. Chim. Pays Bas, 1948, 67, 85.
- 232. P. Radlick and H. T. Crawford, J. Chem. Soc., Chem. Commun., 1974, 127.
- 233. A. P. Krapcho and A. A. Bothner-By, J. Am. Chem. Soc., 1959, 81, 3658.
- 234. M. Demuth and K. Schaffner, Angew. Chem., Int. Ed. Engl., 1982, **21**, 820.
- 235. P. Radlick and L. R. Brown, J. Org. Chem., 1973, 38, 3412.
- 236. H. F. Alburn and W. Dvonch, W. Brit. Patent GB 1295950 (1972) [C.A., **78**, 71562f (1973)].

- 237. P. Egli, J. Labelled Comp. Radiopharm., 1981, 18, 1677.
- 238. R. A. Benkeser, M. L. Burrous, J. J. Hazdra, and E. M. Kaiser, J. Org. Chem., 1963, **28**, 1094.
- 239. T. Watabe, A. Hiratsuka, T. Aizawa, and T. Sawahata, Tetrahedron Lett., 1982, **23**, 1185.
- 240. E. Giovannini and H. Wegmüller, Helv. Chim. Acta, 1958, 41, 933.
- 241. B. B. Sinder and T. C. Kirk, J. Am. Chem. Soc., 1983, 105, 2364.
- 242. S. G. Davies and G. H. Whitham, J. Chem. Soc., Perkin Trans. 1, 1978, 1479.
- 243. M. L. Snow, C. Lauinger, and C. Ressler, J. Org. Chem., 1968, 33, 1774.
- 244. A. K. Singh, R. K. Bakshi, and E. J. Corey, J. Am. Chem. Soc., 1987, **109**, 6187.
- 245. P. Weyerstahl, H. Marschall-Weyerstahl, and S. Scholz, Justus Liebigs Ann. Chem., 1986, 1248.
- 246. W. Hückel and U. Wörfall, Chem. Ber., 1956, 89, 2098.
- 247. D. Johnson, J. W. Smart, and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1977, 497.
- 248. J. E. Sundeen and F. P. Hauck, U.S. Patent US 4131744 (1988) [C.A., **90**, 151684k (1979)].
- 249. C. Eaborn, R. A. Jackson, and R. Pearce, J. Chem. Soc., Perkin Trans. 1, 1975, 470.
- 250. J. E. Sundeen, J. A. Reid, J. A. Osband, and F. P. Hauck, J. Med. Chem., 1977, 20, 1478.
- 251. A. J. Birch, P. Fitton, D. C. C. Smith, D. E. Steere, and A. R. Stelfox, J. Chem. Soc., 1963, 2209.
- 252. D. J. Coughlin and R. G. Salomon, J. Org. Chem., 1979, 44, 3784.
- 253. C. A. Matuszak and L. Dickson, J. Org. Chem., 1972, **37**, 3345.
- 254. G. Bringmann, Justus Liebigs Ann. Chem., 1985, 2105.
- 255. F. P. Hauck and J. E. Sundeen, Ger. Offen. DE 2435898 (1975) [C.A., 83, 113761f (1975)].
- 256. M. N. Paddon-Row and R. Hartcher, J. Am. Chem. Soc., 1980, 102, 662.
- 257. M. N. Paddon-Row, R. Hartcher, and R. N. Warrener, J. Chem. Soc., Chem. Commun., 1976, 305.
- 258. R. F. Travares and E. Katten, Tetrahedrn Lett., 1977, 1713.
- 259. J. S. R. Zilenovski and S. S. Hall, J. Org. Chem., 1981, 46, 4139.
- 260. A. W. Burgstahler, P. L. Chien, and M. O. Abdel-Rahman, J. Am. Chem. Soc., 1964, **86**, 5281.
- 261. J. R. Cozort, J. F. Outlaw, Jr., A. Hawkins, and S. Siegel, J. Org. Chem., 1983, **48**, 4190.

- 262. J. F. Outlaw, Jr., J. R. Cozort, N. Garti, and S. Siegel, J. Org. Chem., 1983, **48**, 4186.
- 263. J. Reiner and W. Jenny, Helv. Chim. Acta, 1969, 52, 1624.
- 264. J. L. Marshall and B.-H. Song, J. Org. Chem., 1974, 39, 1342.
- 265. J. L. Marshall and T. K. Folsom, Tetrahedron Lett., 1971, 757.
- 266. E. Cotsaris and M. N. Paddon-Row, J. Chem. Soc., Chem. Commun., 1982, 1206.
- 267. D. N. Butler and R. Milburn, Can. J. Chem., 1972, 50, 1249.
- 268. M. N. Paddon-Row and R. Hartcher, J. Am. Chem. Soc., 1980, 102, 671.
- 269. R. Gray and V. Boekelheide, J. Am. Chem. Soc., 1979, **101**, 2128.
- 270. W. D. Rohrbach and V. Boekelheide, J. Org. Chem., 1983, 48, 3673.
- 271. W. D. Rohrbach, R. Sheley, and V. Boekelheide, Tetrahedron, 1984, **40**, 4823.
- 272. Y. Sekine and V. Boekelheide, J. Am. Chem. Soc., 1981, 103, 1777.
- E. J. Eisenbraun, D. V. Hertzler, R. C. Bansal, P. W. K. Flanagan, and M. C. Hamming, Prepr. Pap.—Am. Chem. Soc., Div. Petrol. Chem., 1986, 13, 55.
- 274. P. W. Rabideau and D. L. Huser, J. Org. Chem., 1983, 48, 4266.
- 275. A. J. Birch, A. R. Murray, and H. Smith, J. Chem. Soc., 1951, 1945.
- 276. Th. J. Nieuwstad and H. van Bekkum, Recl. Trav. Chim. Pays-Bas, 1972, **91**, 1069.
- 277. W. Hückel and C. M. Jennewein, Chem. Ber., 1962, 95, 350.
- 278. W. Hückel and M. Wartini, Justus Liebigs Ann. Chem., 1965, 689, 40.
- 279. A. J. Birch and G. Nadamuni, J. Chem. Soc., Perkin Trans. 1, 1972, 545.
- 280. D. F. Lindow, C. N. Cortez, and R. G. Harvey, J. Am. Chem. Soc., 1972, **94**, 5406.
- 281. K. Sakane, S. Oda, E. Haruki, Y. Otsuji, and E. Imoto, Bull. Chem. Soc. Jpn., 1974, **47**, 2515.
- 282. R. G. Harvey, P. P. Fu, and P. W. Rabideau, J. Org. Chem., 1976, **41**, 2706.
- 283. S. Mejer, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1961, 9, 773.
- 284. J. Runge, Justus Liebigs Ann. Chem., 1967, 707, 75.
- 285. S. Mejer, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1962, **10**, 463 [C.A., **59**, 1553 (1963)].
- 286. R. G. Harvey, L. Arzadon, J. Grant, and K. Urberg, J. Am. Chem. Soc., 1969, **91**, 4535.
- 287. R. G. Harvey, D. F. Lindow, and P. W. Rabideau, Tetrahedron, 1972, **28**, 2909.
- 288. R. G. Harvey and P. W. Rabideau, Tetrahedron Lett., 1970, 3695.

- 289. P. W. Rabideau, J. L. Mooney, W. K. Smith, and A. Sygula, J. Org. Chem., 1988, **53**, 589.
- 290. E. J. Eisenbraun, R. G. Melton, P. W. Flanagan, M. C. Hamming, and G. W. Keen, Prepr. Pap.—Am. Chem. Soc., Div. Petrol. Chem., 1961, 16, B43.
- 291. P. W. Rabideau, J. L. Mooney, and K. B. Lipkowitz, J. Am. Chem. Soc., 1986, **108**, 8130.
- 292. R. G. Harvey, J. Org. Chem., 1971, 36, 3306.
- 293. Z. Marcinow, A. Sygula, and P. W. Rabideau, J. Org. Chem., 1988, **53**, 3603.
- 294. P. P. Fu, C. Cortez, K. B. Sukumaran, and R. G. Harvey, J. Org. Chem., 1973, **44**, 4265.
- 295. R. G. Harvey, P. P. Fu, and P. W. Rabideau, J. Org. Chem., 1976, **41**, 2706.
- 296. P. W. Rabideau, J. L. Mooney, and J. N. Hardin, J. Org. Chem., 1985, **50**, 5737.
- 297. D. H. Paskovich and N. C. Das, J. Chem. Soc., Chem. Commun., 1967, **39**.
- 298. P. W. Rabideau and Z. Marcinow, Fuel, 1985, 64, 872.
- 299. A. J. Birch and K. B. Chamberlain, Org. Synth. Coll. Vol. 6, 1988, 936.
- 300. P. F. Schuda, S. J. Potlock, H. Ziffer, Tetrahedron, 1987, 43, 463.
- 301. P. Yates and G. E. Langford, Can. J. Chem., 1981, 59, 34.
- 302. S. A. Monti, S.-C. Chen, Y.-L. Yang, S.-S. Yuan, and O. P. Bourgeois, J. Org. Chem., 1978, **43**, 4062.
- 303. P. A. Harland and P. Hodge, Synthesis, 1982, 223.
- 304. G. L. Burge, D. J. Collins, and J. D. Reitze, Aust. J. Chem., 1982, **35**, 1913.
- 305. H. Nishimura, T. Takabatake, K. Kaku, A. Seo, and J. Mizutani, Agric. Biol. Chem., 1981, **45**, 1861.
- 306. P. A. Pernemalm and C. W. Dence, Acta Chem. Scand., Ser B, 1974, **28**, 453.
- 307. D. J. Goldsmith and J. J. Soria, Tetrahedron Lett., 1986, 27, 4701.
- 308. A. T. Bottini, F. P. Corson, and K. A. Frost, Tetrahedron, 1972, 28, 4701.
- 309. W. F. Berkowitz, A. S. Amarasekara, and J. Perumattam, J. Org. Chem., 1987, 52, 1119.
- 310. H. lio, M. Isobe, T. Kawai, and T. Goto, Tetrahedron, 1979, 25, 941.
- 311. H. C. Beyerman, F. F. van Leeuwen, T. S. Lie, L. Maat, and C. Olieman, Recl. Trav. Chim. Pays-Bas, 1976, 95, 238.
- 312. A. J. Pearson and M. Chandler, J. Chem. Soc., Perkin Trans. 1, 1980, 2238.

- 313. G. A. Schiehser and J. D. White, J. Org. Chem., 1980, 45, 1864.
- 314. R. D. Stipanovic and R. B. Turner, J. Org. Chem., 1968, 33, 3261.
- 315. J. B. Lambert and D. E. Marko, J. Am. Chem. Soc., 1985, 107, 7878.
- 316. A. J. Birch and K. P. Dastur, Tetrahedron Lett., 1974, 1009.
- 317. A. J. Pearson, P. Ham, C. W. Ong, T. R. Perrior, and D. C. Rees, J. Chem. Soc., Perkin Trans. 1, 1982, 1527.
- 318. A. J. Pearson, Tetrahedron Lett., 1981, 22, 4033.
- 319. G. R. Stephenson, J. Chem. Soc., Perkin Trans. 1, 1982, 2449.
- 320. A. J. Birch and R. A. Russell, Aust. J. Chem., 1971, 24, 1975.
- 321. F. J. Sardina, A. D. Johnston, A. Mourino, and W. H. Okamura, J. Org. Chem., 1982, 47, 1576.
- 322. K. Mori and K. Sato, Tetrahedron, 1982, 38, 1221.
- 323. J. R. Andersen and O. Joergensen, J. Chem. Soc., Perkin Trans. 1, 1979, 3095.
- 324. V. S. Russkikh and G. G. Abashev, Zh. Org. Khim. (Russ.), 1983, 19, 837 [C. A., 99, 104832h (1983)].
- 325. A. J. Pearson, J. Chem. Soc., Perkin Trans. 1, 1979, 1255.
- 326. A. J. Pearson, P. Ham, and D. C. Rees, J. Chem. Soc., Perkin Trans. 1, 1982, 489.
- 327. H. O. House and C. J. Blankleu, J. Org. Chem., 1968, 33, 53.
- 328. B. R. Davis, G. F. Burkinshaw, E. G. Hutchinson, P. D. Woodgate, and R. Hodges, J. Chem. Soc. C, 1971, 3002.
- 329. M. Murai, S. Sato, and T. Masamune, J. Chem. Soc., Chem. Commun., 1982, 511.
- 330. K. Kaminski and T. Sokotowska, Rocz. Chemii, 1973, **47**, 1091 [C. A., **79**, 137461b (1973)].
- 331. M. Kocor, O. P. Kaltenberg, W. Kotlarek, and A. J. Sadlej, Rocz. Chemii, 1974, 48, 1951 [C.A., 82, 124492z (1975)].
- 332. K. P. Dastur, J. Am. Chem. Soc., 1974, 96, 2605.
- 333. M. D. Soffer and M. A. Jevnick, J. Am. Chem. Soc., 1955, 77, 1003.
- 334. O. P. Vig, A. K. Vig, O. P. Chugh, and K. C. Gupta, Indian J. Chem., 1975, 13, 1126.
- 335. P. Marsham, D. A. Widdowson, and J. K. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1974, 238.
- 336. C. B. Clarke and A. R. Pinder, J. Chem. Soc., 1958, 1967.
- 337. T. Momose, S. Uchida, N. Yamaashi, and T. Imanishi, Heterocycles, 1975, **3**, 713.
- 338. W. Hückel and E. Vevera, Chem. Ber., 1956, **89**, 2105.
- 339. See reference 275.

- 340. H. L. Dryden, G. M. Webber, R. R. Burtner, and J. A. Cella, J. Org. Chem., 1961, 26, 3237.
- 341. T. K. Das, A. Das Gupta, P. K. Ghosal, and P. C. Dutta, Indian J. Chem., 1976, **14B**, 238.
- 342. A. J. Birch, J. E. T. Corrie, P. L. Macdonald, and G. Subba Rao, J. Chem. Soc., Perkin Trans. 1, 1972, 1186.
- 343. D. P. Hamon and N. J. Shirley, Aust. J. Chem., 1987, 40, 1321.
- 344. A. F. Thomas, B. Wilhalm, and J. H. Bowie, J. Chem. Soc. B, 1967, 392.
- 345. D. Johnson, J. W. Smart, and J. K. Sutherland, J. Chem. Soc., Chem. Commun., 1977, 497.
- 346. V. Bhushan, M. M. Rajopadhye, and S. Chandrasekaran, Indian J. Chem., 1985, 24B, 424.
- 347. J. J. Venit and P. Magnus, Tetrahedron Lett., 1980, **21**, 4815.
- 348. G. Stork and D. Livingston, Chem. Lett., 1987, 105.
- 349. R. E. Donaldson and P. L. Fuchs, J. Org. Chem. 1977, 42, 2032.
- 350. A. V. R. Rao, V. H. Deshpande, K. M. Sathaye, and S. W. Jaweed, Indian J. Chem., Sect. B, 1987, 24B, 697.
- 351. M. Kocor and W. Kotlarek, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1961, **9**, 507.
- 352. M. Kocor and W. Kotlarek, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1971, 19, 219 [C.A., 75, 48741t (1971)].
- 353. M. Kocor and O. P. Kaltenberg, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1972, **20**, 25 [C.A., **76**, 153411d (1972)].
- 354. M. Kocor and W. Kotlarek, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1972, **20**, 15 [C.A., **76**, 153412e (1972)].
- 355. P. Radlick, J. Org. Chem., 1965, **30**, 3208.
- 356. B. Weinstein and A. H. Fenselan, J. Org. Chem., 1965, 30, 3209.
- 357. K. Wiesmer, P.-T. Ho, W.-C. Liu, and M. N. Shanbhag, Can. J. Chem., 1975, **53**, 2140.
- 358. J. W. Huffman and M. L. Mole, J. Org. Chem., 1972, 37, 13.
- 359. J. Marshall and R. E. Conrow, J. Am. Chem. Soc., 1983, 105, 5679.
- 360. A. J. Pearson and T. R. Perrior, J. Organomet Chem., 1985, 285, 253.
- 361. A. Murai, S. Sato, and T. Masamune, Bull. Chem. Soc. Jpn., 1984, **57**, 2276.
- 362. M. Ihara, M. Toyota, M. Abe, Y. Ishida, K. Fukumoto, and T. Kametani, J. Chem. Soc., Perkin Trans. 1, 1986, 1543.
- 363. T. L. Macdonald, J. Org. Chem., 1978, 43, 4241.
- 364. R. G. Salomon, M. F. Salomon, M. G. Zagorski, J. M. Reuter, and D. J. Coughlin, J. Am. Chem. Soc., 1982, **104**, 1008.

- 365. D. G. Leppard, P. W. Raynolds, C. B. Chapleo, and A. S. Dreiding, Helv. Chim. Acta, 1976, **59**, 695.
- 366. J. D. White, J. F. Ruppert, M. A. Avery, S. Torii, and J. Nokami, J. Am. Chem. Soc., 1981, **103**, 1813.
- 367. E. L. Michelotti and E. L. Sanchez, Z. Naturforsch., 1983, 38B, 497.
- 368. A. B. Kazi and J. K. Sutherland, Indian J. Chem., 1987, 26B, 511.
- 369. B. A. McAndrew, J. Chem. Soc., Perkin Trans. 1, 1979, 1837.
- 370. C. L. Kirkemo and J. D. White, J. Org. Chem., 1985, 50, 1316.
- 371. P. C. Mukharji, D. Bhattacharjee, and T. K. Das Gupta, Indian J. Chem., 170, **8**, 318.
- 372. G. Subrahmanyam, Indian J. Chem., 170, 8, 210.
- 373. M. V. R. Koteswara Rao, G. S. Krishna Rao, and S. Dev, Tetrahedron, 1966, **22**, 1977.
- 374. K. Yamada, H. Nagase, Y. Hayakawa, K. Akoi, and Y. Hirata, Tetrahedron Lett., 1973, 4963.
- 375. K. Mori, T. Miyake, I. Yoshimura, and M. Matsui, Agr. Biol. Chem., 1969, 33, 1745.
- 376. K. K. Chakravarti, B. G. Hazra, and Y. Gopichanol, Indian J. Chem., 1974, **12**, 275.
- 377. P. K. Oommen, Bull. Chem. Soc. Jpn., 1976, 49, 1985.
- 378. S. B. Maiti, A. P. Kundu, A. Chatterjee, and S. R. Raychuduri, Indian J. Chem., 1986, **25B**, 15.
- 379. L. J. Chinn and H. L. Dryden, Jr., J. Org. Chem., 1961, 26, 3904.
- 380. T. Kametani, H. Matsumoto, T. Honda, and K. Fukumoto, Tetrahedron Lett., 1980, **21**, 4847.
- 381. L. N. Mander and L. T. Palmer, Aust. J. Chem., 1979, 32, 823.
- 382. K. Mori, M. Matsui, and I. Yoshimura, Agric. Biol. Chem., 1970, 34, 1204.
- 383. A. R. K. Murthy and G. S. R. Subba Rao, Indian J. Chem., 1981, **20B**, 569.
- 384. R. E. Ireland and L. N. Mander, J. Org. Chem., 1967, 32, 689.
- 385. O. P. Vig, S. D. Sharma, S. D. Kumar, and V. K. Handa, Indian J. Chem., 1979, **17B**, 295.
- 386. A. J. Birch, D. N. Butler, R. Effenberber, R. W. Rikards, and T. J. Simpson, J. Chem. Soc., Perkin Trans. 1, 1979, 807.
- 387. L. J. Chinn, H. L. Dryden, Jr., and R. R. Burtner, J. Org. Chem., 1961, **26**, 3910.
- 388. P. C. Chakraborti, S. Ghosh, P. R. Kanjilal, G. O. S. V. Satyanarayana, and V. R. Ghatak, Indian J. Chem., 1979, **18B**, 183.
- 389. H. Nemoto, M. Hashimoto, H. Kurobe, K. Fukumoto, and T. Kametani, J.

Chem. Soc., Perkin Trans. 1, 1985, 927.

- 390. R. C. Cambie and R. A. Franich, Aust. J. Chem., 1971, 24, 117.
- 391. N. Hamanaka, T. Okuno, T. Nakajima, A. Furusaki, and T. Matsumoto, Chem. Lett., 1972, 1037.
- 392. R. B. Turner, O. Buchardt, E. Herzog, R. B. Morin, A. Riebel, and J. M. Sanders, J. Am. Chem. Soc., 1966, 88, 1766.
- 393. A. K. Banerjee, C. D. Ceballo, M. N. Vallejo, and E. H. Bolivar, Bull. Chem. Soc. Jpn., 1978, **52**, 608.
- 394. J. F. Grove, R. C. Jennings, A. W. Johnson, and A. F. White, Chem. Ind. (London), 1974, 346.
- 395. R. F. Church, R. E. Ireland, and J. A. Marshall, J. Org. Chem., 1966, **31**, 2526.
- 396. G. Stork, A. Meisels, and J. E. Davies, J. Am. Chem. Soc., 1963, **85**, 3419.
- 397. R. C. Cambie, W. A. Denny, T. R. Close, and L. N. Mander, Aust. J. Chem., 1971, **24**, 99.
- 398. F. M. Hauser and K.-W. Park, J. Org. Chem., 1978, 43, 113.
- 399. A. J. Birch and H. Smith, J. Chem. Soc., 1951, 1882.
- 400. A. J. Birch and J. A. K. Quartey, Chem. Ind. (London), 1953, 489.
- 401. K. Ito, M. Haruna, and H. Furukawa, J. Chem. Soc., Chem. Commun., 1975, 681.
- 402. M. Haruna and K. Ito, J. Chem. Soc., Chem. Commun., 1976, 345.
- 403. W. F. Johns, J. Org. Chem., 1963, 28, 1856.
- 404. Y. Yamada and H. Nagaoka, Synthesis, 1977, 577.
- 405. J. Romer and H. Wagner, Radiochem. Radioanal. Lett., 1976, 25, 255.
- 406. G. Teichmuller, K. Barnikol-Oettler, G. Streibhardt, M. Wentzke, and H. Henkel, Ger. (East) DD 208157 A1 (1984) [C.A., **101**, 211553z (1984)].
- 407. R. P. Stein, G. C. Buzby, Jr., G. H. Douglas, and H. Smith, Tetrahedron Lett., 1967, 3603.
- 408. E. E. van Tamelen, J. G. Carlson, R. K. Russel, and S. R. Zawacky, J. Am. Chem. Soc., 1981, **103**, 4615.
- 409. J. H. Dodd, J. E. Starret, and S. M. Weinreb, J. Am. Chem. Soc., 1984, **106**, 1811.
- 410. H. A. Staab, C. P. Herz, and H. E. Henke, Tetrahedron Lett., 1974, 4393.
- 411. W. Nagata, T. Terasawa, S. Hirai, and K. Takeda, Tetrahedron Lett., 1960, 27; Chem. Pharm. Bull., 1961, **9**, 769.
- 412. W. F. Johns, J. Am. Chem. Soc., 1958, 80, 6456.
- 413. S. Hayakawa, T. Takata, T. Fujiwara, and S. Hashimoto, Biochem. J., 1977, **164**, 709.

- 414. J. A. J. Leemhuis, Ger. Offen. DE 2459706 (1975) [C.A., **83**, 179400u (1975)].
- 415. R. Bucourt, A. Pierdet, and J. Salmon, Ger. Offen. DE 2158260 (1972) [C.A., **77**, 102026v (1972)].
- 416. E. Fujita, M. Shibuya, S. Nakamura, Y. Okada, and T. Fujita, J. Chem. Soc., Perkin Trans. 1, 1974, 165.
- 417. D. Varech, L. Lacombe, and J. Jacques, Nouv. J. Chim., 1984, 8, 445.
- 418. K. Yoshioka, T. Asako, G. Goto, K. Hiraga, and T. Miki, Chem. Pharm. Bull., 1973, **21**, 2195.
- 419. R. L. Carney and W. S. Johnson, J. Am. Chem. Soc., 1974, 96, 2549.
- 420. O. F. Katsapova, E. B. Krylova, V. F. Martynov, and A. G. Shavva, Zh. Obshch. Khim. (Russ.), 1981, **51**, 2797 [C.A., **96**, 123084v (1982)].
- 421. E. E. van Tamelen and E. G. Taylor, J. Am. Chem. Soc., 1980, 102, 1202.
- 422. M. Ihara, M. Toyota, K. Fukumoto, T. Kametani, and T. Honda, J. Chem. Res. Synop., 1984, 252.
- 423. T. Kametani and T. Honda, Heterocycles, 1981, 16, 1673.
- 424. K. M. R. Pillai, W. V. Murray, I. Shooshani, D. L. Williams, D. Gordon, S. Y. Wang, and F. Johnson, J. Med. Chem., 1984, **27**, 1131.
- 425. D. Burn and V. J. Petrov, J. Chem. Soc., 1962, 364.
- 426. R. V. Coombs and E. E. Galanty, Ger. Offen. DE 2035879 (1971) [C.A., **74**, 100301 v (1971)].
- 427. A. R. Daniewski, M. Guzewska, and M. Kocor, J. Org. Chem., 1975, **40**, 3131.
- 428. W. Sucrow, P. Geschwinder, and H. Minas, Ger. Offen. DE 3522023 (1986) [C.A., **105**, 133415x (1986)].
- 429. R. E. Ireland, P. B. Beslin, R. Giger, U. Hengartner, H. A. Kirst, and H. Maag, J. Org. Chem., 1977, **42**, 1267.
- 430. H. Alt, E. R. Franke, and H. Bock, Angew Chem., Int. Ed. Engl., 1969, 8, 525.
- 431. C. B. Wooster, J. Am. Chem. Soc., 1928, 50, 1388.
- 432. S. Mejer and S. Respondek, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1966, 14, 611 [C.A., 66, 105088a (1967)].
- 433. M. E. Kuehne and B. F. Lambert, Org. Synth., Coll. Vol. 5, 1973, 400.
- 434. P. Markov and C. Ivanoff, Tetrahedron Lett., 1962, 1139.
- 435. W. E. Barnett and L. L. Needham, J. Org. Chem., 1975, 40, 2843.
- 436. L. N. Mander, R. H. Prager, and J. V. Turner, Aust. J. Chem., 1974, **27**, 2645.
- 437. E. L. Eliel and T. H. Hoover, J. Org. Chem., 1959, 24, 938.
- 438. M. Julia and B. Malassine, Tetrahedron Lett., 1972, 2495.

- 439. J. L. Marshall and B.-H. Song, J. Org. Chem., 1975, 40, 1942.
- 440. J. L. Marshall and L. Hall, Tetrahedron, 1981, 37, 1271.
- 441. A. Tahara, M. Shimagaki, S. Ohara, T. Tanaka, and T. Nakata, Chem. Pharm. Bull., 1975, **23**, 2329.
- 442. T. B. Windholz and D. R. Brown, J. Org. Chem., 1972, 37, 1647.
- 443. P. W. Rabideau, J. W. Paschal, and L. A. Patterson, J. Am. Chem. Soc., 1975, **97**, 5700.
- 444. A. J. Birch and E. A. Karakhanov, J. Chem. Soc., Chem. Commun., 1975, 480.
- 445. A. J. Birch, J. Chem. Soc., 1947, 1270.
- 446. C. Harris, Ber., 1914, 47, 784.
- 447. J. W. Ashmore and G. K. Helmkamp, Org. Prep. Proced. Int., 1976, 8, 223.
- 448. W. A. Remers, G. J. Gibs, C. Pidacks, and M. J. Weiss, J. Org. Chem., 1971, **36**, 279.
- 449. A. J. Birch and P. G. Lehman, Tetrahedron Lett., 1974, 2395.
- 450. A. J. Birch and D. Nasipuri, Tetrahedron, 1959, **6**, 148.
- 451. W. Hückel, S. Gupté, and M. Wartini, Chem. Ber., 1966, 99, 1388.
- 452. S. O'Brien and D. C. C. Smith, J. Chem. Soc., 1960, 4609.
- 453. W. A. Remers, G. J. Gibs, C. Pidacks, and M. J. Weiss, J. Am. Chem. Soc., 1967, **89**, 5513.
- 454. H. lida, S. Aoyagi, and C. Kibayashi, J. Chem. Soc., Perkin Trans. 1, 1975, 2502.
- 455. H. lida, S. Aoyagi, Y. Yuasa, and C. Kibayashi, Heterocycles, 1977, 6, 1747.
- 456. T. A. Crabb and J. R. Wilkinson, J. Chem. Soc., Perkin Trans. 1, 1975, 58.
- 457. O. Yonemitsu, P. Ceruti, and B. Witkop, J. Am. Chem. Soc., 1966, **88**, 3941.
- 458. C. Verchere and C. Viel, Heterocycl. Chem., 1980, **17**, 49.
- 459. A. J. Birch, R. W. Rickards, and K. J. Stapleford, Aust. J. Chem., 1969, **22**, 1321.
- 460. Yu. L. Slominski, A. R. Smirnowa, S. V. Popow, and A. I. Tolmaczev, Zh. Org. Khim. (Russ.), 1983, **19**, 2389 [C.A., **100**, 53184c (1984)].
- 461. G. L. Olson, H.-C. Cheung, K. D. Morgan, J. F. Blount, L. Todaro, L. Berger, A. B. Davidson, and E. Boff, J. Med. Chem., 1981, **24**, 1026.
- 462. A. J. Birch and H. H. Mantsch, Aust. J. Chem., 1969, 22, 1103.
- 463. B. Heath-Brown, Chem. Ind. 1969, 1595.
- 464. W. A. Remers and M. J. Weiss, Tetrahedron Lett., 1968, 81.
- 465. S. Danishefsky, P. Cain, and A. Nagel, J. Am. Chem. Soc., 1975, 97, 380.
- 466. S. Danishefsky and R. Cavanaugh, J. Am. Chem. Soc., 1968, 90, 520.
- 467. M. Schaefer-Ridder and U. Engelhardt, J. Org. Chem., 1981, 46, 2895.
- 468. T. Kametani, T. Uryu, and K. Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1977, 383.
- 469. H. Schmidhammer and A. Brossi, Can. J. Chem., 1982, 60, 3055.
- 470. See reference 227.
- 471. F. L. Hsu, K. C. Rice, and A. Brossi, Helv. Chim. Acta, 1980, 63, 2042.
- 472. F. L. Hsu, K. C. Rice, and A. Brossi, Helv. Chim. Acta, 1982, 65, 1576.
- 473. T. Kitahara and M. Matsui, Agric. Biol. Chem., 1974, 38, 171.
- 474. K. K. Pivnitski and Yu. P. Badanova, Zh. Obshch. Khim. (Russ.), 1978, 48, 1669 [C. A., 90, 6601b (1979)].
- 475. J. E. Sundeen, J. A. Reid, J. A. Osband, and F. P. Hauck, J. Med. Chem., 1977, **20**, 1478.
- 476. K. C. Rice, J. Org. Chem., 1980, 45, 3135.
- 477. R. Grewe, H. Fischer, and W. Friedrichsen, Chem. Ber., 1967, 100, 1.
- 478. H. C. Beyerman, J. van Berkel, T. S. Lie, L. Maat, J. C. M. Wessels, H. H. Bosman, E. Buurman, E. J. M. Bijsterveld, and H. J. M. Sinnige, Recl. Trav. Chim. Pays-Bas, 1978, **97**, 127.
- 479. G. C. Morrison, R. O. Waite, and J. Shavel, Jr., J. Heterocycl. Chem., 1972, **9**, 683.
- 480. H. Tanaka, M. Shibata, and K. Ito, Chem. Pharm. Bull., 1984, 32, 3271.
- 481. H. Tanaka, Y. Takamura, M. Shibata, and K. Ito, Chem. Pharm. Bull., 1986, **34**, 24.
- 482. R. J. Chorvat, J. R. Palmer, and R. Pappo, J. Org. Chem., 1978, 43, 966.
- 483. W. Nagata, T. Sugasawa, M. Narisada, T. Wakabayashi, and Y. Hayase, J. Am. Chem. Soc., 1967, **89**, 1484.
- 484. W. Nagata, T. Wakabayashi, M. Narisada, Y. Hayase, and S. Kakamate, J. Am. Chem. Soc., 1971, **93**, 5741.
- 485. S. Takano, M. Sasaki, H. Kanno, K. Shishido, and K. Ogasawara, J. Org. Chem., 1978, **43**, 4169.
- 486. J. D. Wilcock and E. Winterfeldt, Chem. Ber., 1974, **107**, 975.
- 487. A. I. Meyers, D. B. Miller, and F. H. White, J. Am. Chem. Soc., 1988, **110**, 4778.
- 488. H. Rischke and J. D. Wilcock, Chem. Ber., 1973, 106, 3106.
- 489. H. C. Beyerman, E. Buurman, L. Maat, and C. Olieman, Recl. Trav. Chim. Pays-Bas, 1976, **95**, 184.
- 490. W. V. Curran, J. Chem. Soc. D, 1971, 478.
- 491. L. Mandell, C. A. Wilson, S. Sinclair, and F. J. Heldrich, Heterocycles,

1987, **26**, 713.

- 492. T. Kametani, M. Kajiwara, T. Takahashi, and K. Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1975, 737.
- 493. G. C. Morrison, R. O. Waite, and J. Shavel, Jr., Tetrahedron Lett., 1967, 4055.
- 494. S. Kumar and N. Agarwal, J. Org. Chem., 1986, 51, 2445.
- 495. T. Kametani, Y. Hirai, and K. Fukumoto, Heterocycles, 1976, 4, 29.
- 496. T. Kametani, Y. Hirai, and K. Fukumoto, Chem. Pharm. Bull., 1976, **24**, 2500.
- 497. S. Danishefsky and A. Nagel, J. Chem. Soc., Chem. Commun., 1972, 373.
- 498. F. L. Weisenborn and H. E. Applegate, J. Am. Chem. Soc., 1956, **78**, 2021.
- 499. J. P. Kutney, P. Grice, K. Piotrowska, S. J. Rettig, J. Szykula, J. Trotter, and L. V. Chu, Helv. Chim. Acta, 1983, **66**, 1820.
- 500. I. M. Coggiola, Nature, 1963, 200, 954.
- 501. T. Kinoshita and T. Miwa, J. Chem. Soc., Chem. Commun., 1974, 181.
- 502. T. Kinoshita, K. Miyano, and T. Miwa, Bull Chem. Soc. Jpn., 1975, **48**, 1865.
- 503. T. Kinoshita and T. Miwa, Carbohydr. Res., 1973, 28, 175.
- 504. J. Slobbe, Aust. J. Chem., 1976, 29, 2553.
- 505. T. Masamune, M. Ono, and H. Matsue, Bull. Chem. Soc. Jpn., 1975, **48**, 491.
- 506. J. E. Semple, P. C. Wang, Z. Lysenko, and M. M. Joullie, J. Am. Chem. Soc., 1980, **102**, 7505.
- 507. T. Kinoshita and T. Miwa, Bull. Chem. Soc. Jpn., 1978, 51, 225.
- 508. S. D. Darling and K. D. Wills, J. Org. Chem., 1967, 32, 2794.
- 509. D. P. Brust and D. S. Tarbell, J. Org. Chem., 1966, **31**, 1251.
- 510. B. Graffe, M. C. Sacquet, and P. Maitte, Bull. Soc. Chim. Fr. (7–8), 1979, 350.
- 511. A. Murai, S. Sato, and T. Masamune, Bull. Chem. Soc. Jpn., 1984, **57**, 2286.
- 512. L. J. Dolby and E. Adler, Tetrahedron Lett., 1971, 3803.
- 513. L. H. Brannigan and D. S. Tarbell, J. Org. Chem., 1966, **31**, 1251.
- 514. J. M. Ferland and Y. Lefebvre, Can. J. Chem., 1984, 62, 315.
- 515. D. K. Banerjee and P. R. Srinivasan, Indian J. Chem., 1972, **10**, 891.
- 516. D. F. Crowe, P. H. Christie, J. I. DeGraw, A. N. Fujiwara, E. Grange, P. Lim, M. Tanabe, T. Cairns, and G. Skelly, Tetrahedron, 1983, **39**, 3083.
- 517. S. F. Birch and D. T. McAllan, J. Chem. Soc., 1951, 2556.

- 518. W. G. Blenderman, M. M. Joullie, and G. Preti, Tetrahedron Lett., 1979, 4985.
- 519. Ya. L. Gol'dfarb, A. V. Semenovskii, E. P. Zaharov, G. V. Davydova, and F. M. Stoyanovich, Bull. Acad. Sci. USSR, Chem. Ser. (Engl. Trans.), 1979, 448 [C. A., **90**, 168011m (1979)].
- 520. G. Lange, M. E. Savard, T. Viswanatha, and G. I. Dimitrenko, Tetrahedron Lett., 1985, **26**, 1791.
- 521. S. F. Birch and D. T. McAllan, J. Chem. Soc., 1951, 3411.
- 522. W. G. Blenderman and M. M. Joullie, Synth. Commun., 1981, 11, 881.
- 523. K. Nishino, S. Yano, Y. Kohashi, K. Yamamoto, and I. Murata, J. Am. Chem. Soc., 1979, **101**, 5059.
- 524. G. A. Tolstikov, E. E. Shul'ts, Yu. T. Struchkov, D. S. Yufit, and S. Lindeman, Zh. Org. Khim. (Russ.), 1986, 22, 121 [C. A., 106, 102607c (1987)].
- 525. P. W. Rabideau, J. W. Paschal, and L. E. Patterson, J. Am. Chem. Soc., 1975, **97**, 5700.
- 526. J. A. Marshall and G. A. Flynn, Synth. Commun., 1979, 9, 123.
- 527. W. M. Grootaert, R. Mijngheer, and P. J. DeClercq, Tetrahedron Lett., 1982, **23**, 3287.
- 528. F. X. Webster and R. M. Silverstein, Synthesis, 1987, 922.
- 529. G. S. R. Subba Rao and H. Ramanathan, Indian J. Chem., Sect. B, 1981, **20B**, 1089.
- 530. J. Dixon, B. Lythgoe, I. A. Siddiqui, and J. Tideswell, J. Chem. Soc. C, 1971, 1301.
- 531. P. R. Bruck, R. D. Clark, R. S. Davidson, W. H. H. Günther, P. S. Littlewood, and B. Lythgoe, J. Chem. Soc. C, 1967, 2529.
- 532. M. C. Grossel and M. J. Perkins, J. Chem. Soc., Perkin Trans. 2, 1975, 1544.
- 533. O. L. Chapman and P. Fitton, J. Am. Chem. Soc., 1961, 83, 1005.
- 534. D. H. R. Barton, L. Bould, D. L. J. Clive, P. D. Magnus, and T. Hase, J. Chem. Soc. C, 1971, 2204.
- 535. N. M. Przhiyalgovskaya and S. R. Gaevskaya, Zh. Org. Khim. (Russ.), 1970, **6**, 2310 [C. A., **74**, 53313p (1971)].
- 536. N. A. Nelson, R. S. P. Hsi, J. M. Schuck, and L. D. Khan, J. Am. Chem. Soc., 1960, **82**, 2573.
- 537. L. A. Paquette, T. J. Nitz, R. J. Ross, and P. James, J. Am. Chem. Soc., 1984, **106**, 1446.
- 538. J. B. Hendrickson and P. M. DeCapite, J. Org. Chem., 1985, 50, 2112.
- 539. P. K. Oommen, Aust. J. Chem., 1975, 28, 2095.
- 540. J. W. Cornforth and R. Robinson, J. Chem. Soc., 1946, 676.

- 541. I. Alfaro, W. Ashton, L. D. McManus, R. C. Newstead, K. L. Rabone, N. A. J. Rogers, and W. Kernick, Tetrahedron, 1970, **26**, 201.
- 542. V. M. Kapoor and A. M. Mehta, Synthesis, 1975, 471.
- 543. P. K. Oommen, Aust. J. Chem., 1976, 29, 2087.
- 544. T. Matsumoto and A. Suzuki, Bull. Chem. Soc. Jpn., 1959, 32, 128.
- 545. B. Basu, S. Bhattacharya, and D. Mukherjee, Tetrahedron Lett., 1984, **25**, 1195.
- 546. J. Fried and N. A. Abraham, Tetrahedron Lett., 1965, 3505.
- 547. D. N. Patil and A. N. Mehta, J. Chem. Soc., Perkin Trans. 1, 1982, 201.
- 548. S. P. Khanapure, B. G. Hazra, and K. G. Das, J. Chem. Soc., Perkin Trans. 1, 1981, 1360.
- 549. S. Bhattacharyya, B. Basu, and D. Mukherjee, Tetrahedron, 1983, **39**, 4221.
- 550. S. Bhattacharyya and D. Mukherjee, Tetrahedron Lett., 1982, 23, 4175.
- 551. A. M. Mehta and D. N. Patil, J. Chem. Res. (S), 1982, 4.
- 552. S. Bhattacharyya, M. Ghosal, and D. Mukherjee, Tetrahedron Lett., 1987, **28**, 2431.
- 553. D. K. Banerjee, E. J. Jacob, and N. Mahishi, Steroids, 1970, 16, 733.
- 554. L. N. Mander and R. Urech, Aust. J. Chem., 1983, 36, 1177.
- 555. P. M. Müller and R. Pfister, Helv. Chim. Acta, 1983, 66, 771.
- 556. P. M. Müller, R. Pfister, and R. Urban, European Patent 12801 [C. A., **93**, 1858395 (1980)].
- 557. R. G. Harvey and L. Arzadon, Tetrahedron, 1969, 25, 4887.
- 558. T. L. Gilchrist, C. W. Rees, and D. Tuddenham, J. Chem. Soc., Perkin Trans. 1, 1981, 3214.
- 559. S. Mejer and Z. Marcinow, Rocz. Chemii, 1977, **51**, 1281 [C.A., **88**, 73856k (1978)].
- 560. F. Zutterman, P. DeClercq, and M. Vandewalle, Tetrahedron Lett., 1971, 3191.
- 561. I. K. Zhurkovich and D. V. loffe, Zh. Org. Khim. (Russ.), 1974, **10**, 212 [C.A., **80**, 120365w (1974)].
- 562. B. M. Bandara, A. J. Birch, and W. D. Raverty, J. Chem. Soc., Perkin Trans. 1, 1982, 1755.
- 563. A. L. J. Beckwith, D. M. O'Shea, and D. H. Roberts, J. Chem. Soc., Chem. Commun., 1983, 1445.
- 564. R. M. Acheson and R. F. Flowerday, J. Chem. Soc., Perkin Trans. 1, 1974, 2339.
- 565. J. A. Marshall and P. G. M. Wuts, Synth. Commun., 1977, 7, 233.
- 566. C. P. Chuang and D. J. Hart, J. Org. Chem., 1983, 48, 1782.

- 567. J. A. Marshall and P. G. M. Wuts, J. Org. Chem., 1977, 42, 1794.
- 568. L. N. Mander, J. V. Turner, and B. G. Coombe, Aust. J. Chem., 1974, **27**, 1985.
- 569. M. D. Bachi, J. W. Epstein, Y. Herzberg-Minzly, and H. J. E. Loewenthal, J. Org. Chem., 1969, **34**, 126.
- 570. K. Kosugi, A. V. Anisimov, H. Yamamoto, R. Yamashiro, K. Shirai, and T. Kumamoto, Chem. Lett., 1981, 1341.
- 571. G. A. Olah and R. J. Hunadi, J. Org. Chem., 1981, 46, 715.
- 572. A. J. Birch and J. Slobbe, Tetrahedron Lett., 1978, 627.
- 573. A. J. Birch and P. C. Lehman, J. Chem. Soc., Perkin Trans. 1, 1973, 2754.
- 574. S. Chandrasekaran and J. V. Turner, Tetrahedron Lett., 1982, 23, 3799.
- 575. A. S. Kende, R. A. Battista, and S. B. Sandoval, Tetrahedron Lett., 1984, **25**, 1341.
- 576. D. F. Taber, J. Org. Chem., 1976, 41, 2649.
- 577. D. F. Taber and S. A. Saleh, J. Am. Chem. Soc., 1980, 102, 5085.
- 578. D. F. Taber, B. P. Gunn, and I. Ching Chiu, Org. Synth., 1983, 61, 59.
- 579. A. G. Schultz and J. P. Dittami, Tetrahedron Lett., 1983, 24, 1369.
- 580. A. G. Schultz, F. P. Lavieri, and T. E. Snead, J. Org. Chem., 1985, **50**, 3086.
- 581. A. G. Schultz, F. P. Lavieri, M. Macielag, and M. Plummer, J. Am. Chem. Soc., 1987, **109**, 3991.
- 582. A. B. Smith and R. E. Richmond, J. Am. Chem. Soc., 1983, 105, 575.
- 583. R. Castanedo, C. B. Zetina, and L. A. Maldonado, Heterocycles, 1987, **25**, 175.
- 584. G. S. R. Subba Rao and H. Ramanathan, Indian J. Chem., Sect. B, 1981, **20B**, 1089.
- 585. J. M. Hook and L. N. Mander, J. Org. Chem., 1980, 45, 1722.
- 586. L. N. Mander and M. Woolias, Aust. J. Chem., 1981, 34, 2249.
- 587. J. M. Hook, L. N. Mander, and R. Urech, J. Org. Chem., 1984, 49, 3250.
- 588. J. M. Hook, L. N. Mander, R. Urech, Synthesis, 1979, 374.
- 589. M. J. Gunter and L. N. Mander, Aust. J. Chem., 1981, 34, 675.
- 590. K. D. Krautwurst and W. Tochtermann, Chem. Ber., 1981, 114, 214.
- 591. L. N. Mander and R. J. Hamilton, Tetrahedron Lett., 1981, 22, 4115.
- 592. A. Goplan and P. Magnus, J. Am. Chem. Soc., 1980, 102, 1756.
- 593. A. Goplan and P. Magnus, J. Org. Chem., 1984, 49, 2317.
- 594. A. Casares, J. M. L. Cardoso, and L. A. Maldonado, Synth. Commun., 1981, **11**, 223.
- 595. L. N. Mander and M. Woolias, Synthesis, 1979, 185.

- 596. Z. Lidert and C. W. Rees, J. Chem. Soc., Chem. Commun., 1982, 499.
- 597. Z. Lidert and C. W. Rees, J. Chem. Soc., Chem. Commun., 1983, 317.
- 598. H. C. Hibbard, C. J. Moody, and C. W. Rees, J. Chem. Soc., Perkin Tran.s. 1, 1985, 735.
- 599. N. M. Prziyalgovskaya, E. N. Sidorenko, and A. T. Prudchenko, Zh. Org. Khim. (Russ.), 1975, **11**, 1679 [C.A., **83**, 192895d (1975)].
- 600. H. O. House and E. J. Zaiko, J. Org. Chem., 1977, 42, 3780.
- 601. B. Basu and D. Mukherjee, J. Chem. Soc., Chem. Commun., 1984, 105.
- 602. A. J. Baker and A. C. Goudie, J. Chem. Soc., Chem. Commun., 1972, 951.
- 603. H. J. E. Loewenthal, *Guide for the Perplexed Organic Experimentalist*, Hyden, London, 1978, pp. 133–138.
- 604. J. M. Hook, L. N. Mander, and R. Urech, J. Am. Chem. Soc., 1980, **102**, 6628.
- 605. C. D. Gutsche and H. H. Peter, Org. Synth., Coll. Vol. 4, 1963, 887.
- 606. J. F. Eastham and D. R. Larkin, J. Am. Chem. Soc., 1959, 81, 3652.
- 607. G. M. Watt, C. M. Knowles, and L. O. Morgan, J. Am. Chem. Soc., 1947, 69, 1657.
- 608. J. A. van Doorn and N. Meijboom, J. Chem. Soc., Chem. Commun., 1987, 1700.
- 609. G. Stork and J. W. Schulenberg, J. Am. Chem. Soc., 1956, 78, 250.
- 610. D. J. Marshall and R. Deghenghi, Can. J. Chem., 1969, 47, 3127.

The Mitsunobu Reaction

David L. Hughes, Merck Sharp and Dohme Research Laboratories, Merck and Co., Inc., Rahway, New Jersey

1. Introduction

Alkyl and aryl phosphites and phosphines react with compounds having weak heteroatom–heteroatom bonds, such as S-S, O - O, etc., and with azo compounds to form reactive phosphonium salts. These phosphonium salts in turn promote "redox" condensation reactions with compounds having active hydrogens. The condensation reaction of alcohols using the redox couple of a triaryl- or trialkylphosphine and a dialkyl azodicarboxylate has become known as the Mitsunobu reaction, based on his pioneering work in the late 1960s. (1-3) The overall reaction is summarized in Eq. 1, wherein the alcohol (R¹OH) and acidic compound (H–Nu) are condensed to form product (R¹–Nu), while triphenylphosphine is oxidized to triphenylphosphine oxide and the azodicarboxylate is reduced to the hydrazine.

$$PPh_{3} + RO_{2}CN=NCO_{2}R + R^{1}OH + H-Nu \longrightarrow$$

$$(1)$$

$$O=PPh_{3} + RO_{2}CNHNHCO_{2}R + R^{1}-Nu$$

Although the typical redox combination is diethyl azodicarboxylate (DEAD) and triphenylphosphine, many other combinations have found selected use. The reaction is generally limited to primary and secondary alcohols, although tertiary alcohols react in a few intramolecular 4a and intermolecular 4b–d reactions. For secondary alcohols the reaction usually proceeds with clean inversion of stereochemistry. The acidic component of the reaction (denoted as H–Nu in Eq. 1) generally has an aqueous p $K_a < 15$, with intramolecular reactions providing the exceptions. Example of H–Nu include oxygen nucleophiles such as carboxylic acids and phenols; nitrogen nucleophiles such as thiols and thioamides; and carbon nucleophiles such as β -ketoesters.

Major reviews of the Mitsunobu reaction were published in 1981 by Mitsunobu (5) and in 1983 by Castro. 6a The former review concentrated on reactions using DEAD/triphenylphosphine, while the latter review focused on reactions in which halogens replaced the hydroxy group using reagents such as triphenylphosphine/carbon tetrachloride, triphenyl phosphite/iodomethane, and triphenylphosphine/*N*-halosuccinimide. Reactions involving the DEAD/triphenylphosphine redox system are the principal subject of this review,

with emphasis on the literature between 1981 and 1988.

2. Mechanism

In his 1981 review Mitsunobu proposed that the dehydration reactions of alcohols using DEAD and R_3P proceed in three steps: (1) reaction of R_3P with DEAD in the presence of the acid component to form a salt wherein a phosphorus–nitrogen bond is formed; (2) reaction of the DEAD– R_3P adduct with the alcohol to form an activated oxyphosphonium ion intermediate; and (3) displacement via an S_N2 process to form the inverted product and the phosphine oxide. (5) The mechanistic details of each step are discussed below.

STEP 1: ADDUCT FORMATION

 $EtO_2CN=NCO_2Et + R_3P \xrightarrow{HX} EtO_2CN=NHCO_2Et + PR_3 X^-$

STEP 2: ALCOHOL ACTIVATION

 $\begin{array}{c} OH \\ R^{1} \swarrow R^{2} \end{array} + \begin{array}{c} EtO_{2}CN - NHCO_{2}Et \\ + PR_{3} X^{-} \end{array} \end{array} \xrightarrow{OPR_{3}^{+} X^{-}} \\ R^{1} \swarrow R^{2} \end{array} + EtO_{2}CNHNHCO_{2}Et$

STEP 3: S_N2 REACTION

2.1.1. Step 1: Adduct Formation

The reaction of triphenylphosphine and DEAD or diisopropyl azodicarboxylate (DIAD) in methylene chloride or tetrahydrofuran proceeds rapidly to form a colorless zwitterionic adduct, which in the presence of formic acid yields the azaphosphonium formate. The reaction is irreversible since treatment

$$Ph_{3}P + DIAD \longrightarrow i - PrO_{2}CN - NCO_{2}Pr - i$$

$$Ph_{3}P^{+}$$

$$Ph_{3}P^{+}$$

$$HCO_{2}H - i - PrO_{2}CN - NHCO_{2}Pr - i$$

$$Ph_{3}P^{+} - HCO_{2}^{-}$$

of the adduct with tri-*n*-butylphosphine does not lead to phosphine exchange. 6b

The azaphosphonium formate is unstable with respect to formation of the N-formyl hydrazide (10 minutes at 25°) and triphenylphosphine oxide. Acetic acid behaves similarly. (7) This mode of adduct decomposition could be a major

reason for poor yields in Mitsunobu reactions run with sterically small acids having nucleophilic carboxylates when the reagent ratios are 1:1:1. The Mitsunobu reagent can be stabilized by employing triphenylphosphine:DIAD: formic acid in a ratio of 1:1:2, wherein the extra mole of acid hydrogen bonds to the formate ion to reduce its nucleophilicity and afford a reagent having a $t_{1/2}$ of 15 hours at 25°. (7) When the Mitsunobu reagent is formed in the presence

 $i - \PrO_2CN - NHCO_2Pr - i$ Ph_3P^+ $HCO_2^- \cdots HO_2CH$

of a sterically unhindered alcohol and no carboxylic acid, *N*-alkylated products arise. (7)

$$EtO_2CN-NCO_2Et + ROH \longrightarrow ROPPh_3^+ + EtO_2CNNHCO_2Et + PPh_3$$

The Mitsunobu reagent has been shown to have a P - N bond, as opposed to a P - O bond or heterocyclic structure, by IR C = O stretching frequencies and ³¹P NMR isotope shifts induced by ¹⁵N-DIAD. (8, 9)

2.1.2. Step 2: Alcohol Activation

The structure of the activated alcohol species in the Mitsunobu reaction is still under debate, and is dependent on the nature of the substrate and reaction conditions. In his 1981 review Mitsunobu proposed that the activated species was an oxyphosphonium salt. (5) As support for this mechanism, stable oxyphosphonium salts were subsequently isolated and characterized from Mitsunobu reactions involving hindered carbohydrate alcohols, (10) and they have been generated electrochemically. (11) However, the existence of the oxyphosphonium salt intermediate has been questioned. NMR studies of the reaction of triphenylphosphine, DEAD, and alcohols indicate that the key intermediate is the pentavalent dialkoxyphosphorane. (12-14) Using 3,4-dichlorophenol

as the alcoholic component, a diaryloxyphosphorane can be isolated as a crystalline compound. (15) Treatment with an acid affords an ester and triphenylphosphine oxide, leading to the claim that the activated species in the Mitsunobu reaction must be the phosphorane, which on reaction with an acid affords the ester, an alcohol for recycle, and phosphine oxide.

Since the phosphorane was generated in the absence of the acid component of the system, a revised mechanism for the reaction was proposed. 16a In the presence of the acidic component the reaction proceeds as postulated by Mitsunobu via the oxyphosphonium ion intermediate, with formation of that intermediate and its subsequent S_N2 reaction being the slow steps. However, in the absence of acid, the dialkoxyphosphorane is formed. Addition of acid results in the rapid formation and subsequent reaction of the oxyphosphonium salt, and regeneration of a mole of the alcohol. This is recycled via the original

mechanism since acid is present. Thus under these conditions part of the reaction proceeds via the phosphorane and part via the oxyphosphonium salt.

Two subsequent studies have shown that even in the presence of acid, phosphoranes can be formed. 16b,c When one equivalent each of benzoic acid, triphenylphosphine, and DEAD, and two equivalents of ethanol are mixed at –78° in tetrahydrofuran, peaks corresponding to both the phosphorane and the oxyphosphonium salt are observed by ³¹P NMR. 16b In a similar experiment with isopropyl alcohol, the oxyphosphonium salt is the major species, with only a trace of the phosphorane observable. 16b Similarly, with the hindered neopentyl alcohol and diacetone glucose, both phosphorane and oxyphosphonium salt were observed at 0° in the presence of benzoic acid. 16c These data suggest that an equilibrium mixture of phosphorane and oxyphosphonium salt exists, with the nature of the alcohol, solvent, and acid determining the equilibrium concentrations.

In addition, a third species, an (acyloxy)alkoxyphosphorane, has been suggested, based on NMR data. 16d When neopentyl alcohol is treated at 0° in tetrahydrofuran with one equivalent of triphenylphosphine and one equivalent of DIAD, followed by 0.5 equivalent of benzoic acid, a ³¹P NMR peak is observed at –11 ppm. This peak is roughly midway between that expected for an oxyphosphonium salt (+60 ppm) and that expected for a

phosphorane (-50 to -60 ppm). As the temperature is lowered, the peak becomes broader and coalescence occurs at -90° . At -100° two peaks appear, a downfield peak at +61 ppm ascribed to the oxyphosphonium salt, and an upfield peak at -55 ppm ascribed to the (acyloxy)alkoxyphosphorane. The equilibrium

t-BuCH₂OH + PPh₃ + DEAD + 0.5 PhCO₂H \rightarrow

constant between the two species was found to be highly sensitive to solvent and proton sources. Polar solvents such as acetonitrile favor the ion pair. The ion pair is also favored by addition of protic sources such as excess alcohol, benzoic acid, or diisopropyl hydrazine-1,2-dicarboxylate. 16d

Although three activated alcohol species may be involved as intermediates in the Mitsunobu reaction, the oxyphosphonium salt is most likely the key intermediate involved in the displacement of triphenylphosphine oxide leading to product. In a study of the Mitsunobu reaction used to invert the hydroxy center in a thienamycin total-synthesis intermediate, the oxyphosphonium intermediate is the only activated alcohol species observable by NMR. (7) The parameters controlling its formation were clarified.

Three factors control the rate of alcohol activation via the oxyphosphonium salt: (1) the basicity of the carboxylate generated in the formation of the Mitsunobu reagent; (2) the extent of hydrogen bonding to the carboxylate; and (3) substituent effects in the triarylphosphine. (7)

The carboxylate functions as a base to deprotonate the alcohol before $-Ph_3P$ transfer takes place. Examination of the rate of oxyphosphonium ion

intermediate formation as a function of pK_a of the acid component affords a linear plot of pK_a vs. log rate with a slope of 1.25, indicating a high degree of sensitivity of the activation to carboxylate basicity. Using very strong acids with weakly basic carboxylates, such as trifluoroacetic acid, results in very slow formation of intermediate. Use of formic acid in the azetidinone intermediate

+ i-PrO2CN-NHCO2Pr-i

inversion and increasing the HCOOH/HCOO⁻ ratio from 0.54 to 2 affords a 170-fold decrease in the rate of oxyphosphonium ion formation. The principal cause of this effect is the solvation of the formate on by formic acid, thereby reducing the effective basicity of the formate ion. This is the same effect that is used to stabilize the Mitsunobu reagent. The two effects must be properly balanced for a successful Mitsunobu reaction.

With substituted triarylphosphines, a classical Hammett effect is noted for the rate of activated species formation, with a rho of 1.5. (7)

2.1.3. Step 3: S_N2 Reaction

With the azetidinone intermediate as a substrate and formate as the nucleophile, the Mitsunobu reaction proceeds with at least 200:1 stereochemical inversion. The reaction of the oxyphosphonium intermediate with various carboxylates shows only a small effect of carboxylate basicity on the S_N2 reaction rate ($\beta_{Nu} = 0.1-0.15$). This indicates that the transition state for the displacement has considerable S_N1 character with much bond breaking and little bond formation. Thus, although formate is excellent for formation of the oxyphosphonium ion intermediate and trifluoroacetate is poor, they behave similarly in the S_N2 step. (7) An unusual salt effect occurs in the S_N2

reaction. The reaction appears to be zero in formate as the rate of S_N2 reaction remains relatively constant when the concentration of formate ion is increased. However, in the presence of a swamping salt, the reaction displays normal second-order kinetics. Since the ionic intermediates in the S_N2 reaction afford neutral products, addition of excess formate to this step stabilizes the intermediates, and fortuitously, the rate enhancement expected by addition of formate is balanced by the retardation caused by the increase in ionic strength.

In summary, the effectiveness of the Mitsunobu reaction is quite surprising given the complexity of its mechanism. The poor yields obtained in many of the reactions reported in the literature can be traced to the failure to successfully execute one of the three key steps in the reaction.

3. Scope and Limitations

3.1. Carbon–Oxygen Bond Formation

3.1.1.1. Ester Formation

The major use of the Mitsunobu reaction is to invert optically pure secondary alcohols via formation of inverted esters. The reaction is compatible with a wide range of functional and protecting groups,

including β -lactams, (17-32) acetals; (33-42) azides; (43) thioethers; (20, 26, 31, 44-47) trimethylsilyl (TMS), (48, 49) triethylsilyl (TES), (50, 51) and *tert*-butyldimethylsilyl (TBS) ethers, (52-58) chlorides; (55, 59) iodides; (59-61) acetylenes; (62-65) C — Si bonds; (66-69) carbobenzyloxy (Cbz); (70, 71) *tert*-butoxycarbonyl (*t*-Boc); (72-74) tetrahydropyranyl (THP), (75-78) sulfones; (28, 57, 58, 79) O-alkyl oximes; (80) dithianes; (76, 81-83) allenes; (84) trichloroethyl; (85) cyclopropenes; (86) C — Hg bonds; (87) trityl; (88, 89) dichlorocyclopropanes; (90) nitriles; (91-93) methoxyethoxymethyl (MEM) and methoxymethyl (MOM) ethers; (48, 49, 94, 95) 1,2-dioxetanes; (96) diazo; (22) nitro; (22-24, 31, 97-99) and tosyl. (100, 101)

3.1.1.2.1. Esters of Allyl Alcohols

Mitsunobu reaction of allyl alcohols generally provides the inverted S_N^2 product. (35, 38, 40, 44, 48, 49, 54, 55, 76, 77, 80, 83, 84, 91, 102-120) However, in a few cases, S_N^2 (Eq. 2) (69, 91, 121-124) or S_N^1 products (124) are observed.

The 1,2-*cis*-pyranoside **1** forms the S_N^2 product in 79% yield, but the 1,2-*trans* pyranoside **2** forms the epimeric S_N^1 product in equal amounts. (123) The latter reaction apparently proceeds through the allyl carbocation owing to steric hindrance to the incoming nucleophile and to ionization assistance from the anomeric effect of the *trans* methoxy group. Similar results are observed with phthalimide as nucleophile on a similar pyranoside.

Reaction of dicyclopentadienols results in mixtures of inversion and retention products. 124b Deuterium labelling experiments show that extensive scrambling occurs during the reaction, indicating that competing direct and allylic substitution are occurring. The lack of concentration effects on the ratio of inversion to retention rules out the possibility that retention occurs by an S_N1 mechanism (un imolecular) and inversion by an S_N2 mechanism (bimolecular). The reaction probably proceeds through an allylic cation with steric effects determining the location of nucleophile capture. 124b

2-*endo*-Norbornenol reacts with benzoic acid under typical Mitsunobu conditions to provide the *exo* benzoate in 78% yield. 124c In contrast, the *exo* alcohol furnished only the nortricyclic benzoate in 80% yield, presumably by π participation.

3.1.1.2.2. Esterification of Secondary Alcohols—Retention or Epimerization In a few cases secondary alcohols do not proceed with inversion because of an acidic epimerizable center or steric hindrance. The α -hydroxy ester **3** esterifies with complete epimerization. (125) Preparation of the α -methoxy- α -trifluoromethylphenylacetate (MTPA) ester of 2-hydroxy-3-butanone gives 9% racemization, (126)

but no racemization occurs in the preparation of these esters with α -hydroxyesters. 127–128

Steric hindrance results in retention of configuration in the reactions of 4 129–130 and 5. (131) It is postulated that the carboxylic acid is activated to form 6, which then acylates the alcohol. With hemiacetal 7 complete epimerization

occurs at room temperature, whereas complete inversion occurs at -50° when cyclohexanecarboxylic acid is used to form the ester. (50)

3.1.1.2.3. Aryl Esters

Phenols and carboxylic acids in the presence of triphenylphosphine/ DEAD react to form aryl esters in 67–96% yields. Phenols having both electron-withdrawing and electron-donating groups form esters with acetic acid and benzoic acid in high yields, but do not react with trifluoro- and trichloroacetic acids. (132)

3.1.1.2.4. Polyhydroxylic Compounds

Selective reaction can sometimes be obtained with compounds containing several hydroxy groups. Unexpectedly, 1,2-propanediol and styrene glycol undergo predominant reaction at the secondary center instead of the primary center. (133) 1,3-Diols are esterified predominantly at the primary center. (133) The 1,2-diols form the phosphorane 8

which opens via protonation of the least hindered oxygen to produce the oxyphosphonium salt and leads to esterification of the secondary center. 1,3-Diols form no phosphorane. Instead, the oxyphosphonium salt from the primary alcohol is formed preferentially, leading to ester formation at the primary center. (133)

In steroids containing secondary hydroxy groups at the 3 position and at the 7 and/or 12 positions, selective esterification with inversion occurs only at the 3 position. (134-136)

The 3 position of pyranoside **9** is selectively esterified, presumably because of steric effects. (137) The hemiacetal **10** reacts selectively at the more reactive

anomeric position to give the inverted ester in 40% yield. (50) Compounds that contain two primary hydroxy groups, 138–139 two secondary hydroxy groups, (37, 43, 78) or a primary and a secondary hydroxy group, (33, 55, 140, 141) are esterified at both centers, given sufficient reagent and reaction time.

3.1.1.2.5. Lactones

Lactones are prepared by intra- or intermolecular reactions of compounds containing both an alcohol and a carboxylic acid. High dilution favors the intramolecular reaction. As with esterification, inversion at the

hydroxy center usually occurs, indicating that the hydroxy group is activated and displaced in an intramolecular $S_N 2$ reaction. An exception to this is hydroxy acid 11, which undergoes complete epimerization. (142) In this case,

competing carboxy group and hydroxy group activation may be occurring.

Either alkenes or β -lactones result from reaction of β -hydroxy acids, depending on substrate structure and solvent polarity.

 β -Lactones are prepared in good yields at –78°. Stereochemical studies indicate that lactonization of primary (12) and secondary (13) alcohols proceed by hydroxy group activation (inversion), while tertiary alcohols (14) proceed via carboxy group activation (retention). (143-146) β -Lactones prepared from D-

or L-serine derivatives **12** are useful chiral intermediates for formation of a wide variety of α -amino acids. (147-149)

Lactonization of a secondary alcohol is possible in the presence of a primary alcohol under high dilution conditions. (150) Mitsunobu conditions have been

used in the preparation of the natural product macrolactones gleosporone, (151) milbemycin β_3 , (152, 153) colletodiol, (154) vermiculin, (155) and griseoviridin. (156, 157)

3.1.1.2.6. Polymers

N-Protected amino acids react with *p*-alkoxybenzyl and diphenylmethanol resins to form polymeric esters. (158, 159)

3.1.1.3. Ether Formation

Alkyl aryl ethers, enol ethers, and cyclic dialkyl ethers can be prepared using the Mitsunobu reaction.

3.1.1.3.1. Alkyl Aryl Ethers

Reaction of a phenol with primary or secondary alcohols in the presence of DEAD/triphenylphosphine produces an alkyl aryl ether. (160, 161) For reaction of secondary alcohols, there is inversion at the hydroxy carbon, (162) indicating that the reaction occurs by activation of the alcohol followed by S_N2 displacement by the phenol. In the reactions of allyl alcohols the S_N2' reaction sometimes competes with the S_N2 reaction. (163)

Intramolecular reactions are used to form 6- and 7-membered cyclic ethers. (164-167)

Reaction of alcohol **15** with phenol **16** gives the coupling product **17** in good yield only when the concentrations of the alcohol and the DEAD/triphenylphosphine adduct are kept low during the reaction. (168) This prevents coupling of the alcohol with itself to form alkyl ether **18**, which otherwise forms in 30–35% yield.

Generally, the Mitsunobu reaction is not successful when tertiary alcohols are used. However, coupling of phenols with several acetylenic tertiary alcohols proceeds in 35–55% yields. 4b,c Since the stereochemistry of the reactions was not determined, the coupling mechanism is not known.

3.1.1.3.2. Enol Ethers

Enol ethers are prepared by reaction of β -ketoesters with alcohols. (169-171) Further discussion of the factors affecting *C*-vs. *O*-alkylation of these compounds is found in the section on ambident alkylations.

3.1.1.3.3. Dialkyl Ethers

Intermolecular coupling of alcohols with DEAD/triphenylphosphine usually does not occur. Exceptions include the formation of **18** and the use of mercuric bromide to catalyze ether formation between sugars and cyclohexanol. (172, 173) However, intramolecular coupling to make 3-to 7-membered cyclic ethers is a common and high-yield reaction. (174) Formation

of epoxides from *trans* 1,2-diols in sugars often occurs stereoselectively, with only one of the two hydroxy groups being activated and replaced because of steric effects. (175-178) Formation of epoxide can be used to invert both hydroxy groups of pyranoside **19**. (179) Formation of oxetane **20** is a key

step in the synthesis of thromboxane A₂. (180) Epoxidation of chiral diols **21–23** using triphenylphosphine/DEAD, triphenylphosphine/carbon tetrachloride, or diethoxytriphenylphosphine results primarily in retention of configuration in **21** and **23** and racemization in **22**. (181) An explanation of these results is

shown in Scheme 1. It is postulated that the phosphorane and betaines are in equilibrium. For steric reasons, epoxide formation from collapse of betaine 24 is favored, resulting in retention of configuration. Racemized product may be

due to racemization of the phosphorane via the stabilized carbocation **25**. (181)

Scheme 1.

The regioselectivity for epoxide formation of 1,2-diols is opposite to that for ester formation (p. 343). Identical phosphorane intermediates are postulated in both cases. For esterification in the presence of a carboxylic acid, the phosphorane must open to give the secondary oxyphosphonium salt to account for the observed findings. In the absence of acid the phosphorane opens to give the primary oxyphosphonium zwitterion, which leads to epoxide formation with retention of configuration.

3.1.1.4. Other Oxygen Nucleophiles

Alcohols are converted to tosylates of inverted configuration using lithium tosylate or zinc tosylate and triphenylphosphine/DEAD in yields up to 94%. (140, 182) *N*-Hydroxyphthalimide reacts with alcohols and DEAD/triphenylphosphine to form phthalimidooxy derivatives. (183, 184) Bromohydrin **26** forms equal amounts of the expected S_N2 product and that arising from a phenonium ion (S_N1) rearrangement. (185)

Ethanol, (186) 4-nitrophenethanol, (187-189) and 3,4-dimethoxybenzyl alcohol (190) react at oxygen of the amide functionality in guanosine nucleotides. In contrast, thymidine and uridine nucleotides alkylate on nitrogen with 4-nitrophenethanol, (191) while inosine gives a 2:1 mixture of *O*- vs. *N*-alkylation. (192) If the nucleotides have unprotected hydroxy groups, then intramolecular reactions

occur. (193, 194) While cyclic imides such as succinimide and phthalimide react at nitrogen, acyclic imides react at oxygen. (195) Hydroxyamides react intramolecularly to form 2-oxazolines. (196) Phosphinic acids (197) and phosphonates (198) form esters with alcohols using DEAD/triphenylphosphine.

Carbonates are prepared from alcohols and CO₂ using DEAD/triphenylphosphine. (199) 2,6-Di-*tert*-butyl-4-nitrophenol reacts with the primary hydroxy

ROH +
$$CO_2$$
 \xrightarrow{DEAD} \xrightarrow{O}
PPh₃ ROCOR

group of nucleosides to form aci-nitro esters using triphenylphosphine/DEAD. The aci-nitro esters react with Wittig reagents to form olefins, serving as masked aldehydes. (200) Aryl and alkyl carboxylic acids are converted to

anhydrides in 60–96% yields using triphenylphosphine/DEAD in tetrahydrofuran. (201)

3.2. Carbon–Nitrogen Bond Formation

3.2.1.1. Cyclic Imides

Conversion of alcohols into inverted amines is accomplished by coupling a secondary alcohol with phthalimide using DEAD/triphenylphosphine followed by hydrazinolysis of the phthalimido product to the amine. (202) *endo*-Benzonorbornen-2-yl alcohols react to form *exo* phthalimido

derivatives, but *exo* alcohols give mixtures of *endo* and *exo* products by a phenyl-assisted S_N1 process. Substitution of a trifluoromethyl group into the phenyl ring reduces the amount of S_N1 character, (203) while a 4-methoxy group results in complete retention. (204) Coupling of alcohols with other cyclic

imides, including glutarimide, succinimide, hydantoin, and oxazolidinedione, is used to make substrates for *N*-acyliminium cyclizations. (205) There is one example of competitive *O*-alkylation, leading to an inverted alcohol. (206)

3.2.1.2. Azides

Alcohols are converted into azides using hydrazoic acid, zinc azide, or diphenylphosphoryl azide as nucleophile, generally in benzene or toluene solvent. Secondary alcohols are inverted except when steric hindrance leads to retention (207) or when the presence of an acidic hydrogen leads to racemization (Eq. 3). (208) A convenient one-pot preparation of amines from

1:1

alcohols employs the Mitsunobu reaction to make the azide followed by an in situ Staudinger reaction with triphenylphosphine to produce an imino-phosphorane, which is hydrolyzed to the amine during aqueous workup. (208) Overall isolated yields range from 35 to 85%.

$$ROH \xrightarrow{\text{DEAD/PPh}_3} \left[\text{R-N}_3 \right] \xrightarrow{\text{PPh}_3} \left[\text{R-N=P(Ph)}_3 \right] \xrightarrow{\text{HCl}} \left[\text{R-NH}_3 \text{Cl} \right]$$

3.2.1.3. Lactam Formation

 β -Lactams are formed by intramolecular dehydration of β -hydroxycarboxamide derivatives. (209-211) Side reactions include elimination and formation of oxazolines and aziridines. Oxazoline and aziridine formation can be prevented by using carbonate, (209-211) oxazolin-2-oyl, (212, 213) or phthalimide (212, 214, 215) protecting groups for the side-chain amino group. Yields of β -lactams are 80–90% for hydroxamate precursors (Z = benzyloxy) (209-211) and 70–80% for anilide precursors (Z = 4-tolyl). (214, 215) Cyclization of **27** (Z = 4-tolyl, R = H, R = benzyloxy)

using DEAD and a variety of phosphines gives only small changes in yield of β -lactam: triphenylphosphine (74%). tri-*n*-butylphosphine (68%), triethyl phosphite (79%), and tris(dimethyl-amino)phosphine (67%). (215) Replacing DEAD with azo reagents **28–30** gives no β -lactam formation with triphenylphosphine, but 47–57% yields with tri-*n*-butylphosphine. (215) Cyclization of **31** with DEAD/triphenylphosphine gives 22% β -lactam **32** and 78% elimination product **33**. (216) The olefin

is also the major product with triphenylphosphine/carbon tetrachloride/triethylamine, triphenylphosphine dibromide, and triphenylphosphine dichloride. β -Lactam yields of 50–70% are achievable when triphenyl phosphite, phenoxydiphenylphosphine, or diphenoxyphenylphosphine are used along with DEAD. Use of trimethyl phosphite and triisopropyl phosphite with DEAD results in mixtures of *N*- and *O*-alkylation (**34** and **35**). (216) Cyclization

of amide **36** results in some competitive *O*-alkylation, depending on the azodicarboxylate. (217) With diisopropyl azodicarboxylate, 40% of **37** and no **38** are obtained. Diethyl azodicarboxylate gives 22% **37** and 5.5% **38**, while dimethyl azodicarboxylate gives 14% each of **37** and **38**.

Competitive *N*- and *O*-alkylation also occurs in the cyclization to the 7-membered lactam. (218)

Cyclization of amide **39** using 5.0 equivalents of triphenylphosphine/DEAD in tetrahydrofuran affords a thermodynamic mixture of diastereomers **40** and **41** (2:1 ratio) along with 2% elimination product **42**. (219) Unreacted **39** isolated from a reaction mixture is not epimerized, indicating that epimerization occurs in the intermediate oxyphosphonium salt or in the product β -lactam. Treating pure **40** with 2.5 equivalents of DEAD/triphenylphosphine

in tetrahydrofuran results in a reestablishment of the 2:1 diastereomeric mixture in 15 minutes, indicating that the DEAD-triphenylphosphine, adduct is a sufficiently strong base to epimerize the product β -lactam. Decreasing the amounts of DEAD and triphenylphosphine has no effect on the diastereomeric ratio of 40 to 41, which are at thermodynamic equilibrium, but increases the elimination product 42: 7% at 2.5 equivalents, 12% at 1.8 equivalents, 16% at 1.5 equivalents, and 23% at 1.0 equivalent. When triphenylphosphine is

replaced with triethyl phosphite, the reaction is slower and less epimerization takes place. With 2.5 equivalents of DEAD/triethyl phosphite, the ratio of **40:41** is 6.8:1, while with 1.0 equivalent the ratio is >50:1. ¹H NMR analysis indicates that epimerization is taking place in the oxyphosphonium ion intermediate. (168, 219)

 β -Lactam formation occurs with tertiary alcohol **43** but gives a mixture of isomeric products **44** and **45**. 4a Labeling experiments suggest that **45** arises via an intramolecular 1,2-acyl migration–cyclization process. (220)

DEAD/triphenylphosphine.

High yields of aziridines are obtained from 2-aminoethanol derivatives provided that the amine is secondary and one of the carbon atoms is substituted. (221)

Reaction of 3-(*N*-benzylamino)-1-propanol with DEAD/triphenylphosphine results in formation of the DEAD adduct **46**. (222) The desired azetidine **47** is obtained by using an acid to protonate the hydrazide anion, preventing

its reaction. The pyrrolidine moiety of mesembrine is constructed by an intramolecular Mitsun obu reaction. (224) Nitrogen-bridged cyclonucleosides with

a 7-membered ring are prepared in high yields with DEAD/triphenylphosphine. (226) An intramolecular S_N2' reaction provides the 7-membered heterocycle

48. (227) Activation of the tertiary alcohol is made possible by initial activation of the primary hydroxy group followed by ring closure to the phosphorane, which is observed by ³¹P NMR.

3.2.1.5. Other Intermolecular Carbon–Nitrogen Bond-Forming Reactions Protected hydroxylamines react with α -hydroxycarbonyl compounds to form protected aminoacid esters in 20–82% yields, plus adducts **49** and **50** in 10–50% yields arising from reaction of the α -hydroxycarbonyl compound with

DEAD. (228) Phosphoramidates condense with alcohols, and the resulting *N*-alkylated products can be cleaved to form amines. 229,230a

N-Alkyl- and *N*-acylsulfonamides react with alcohols in the presence of DEAD/triphenylphosphine to give alkylated sulfonamide products. The Boc or tosyl groups can be selectively removed to give the monoselectively protected amines. 230b

3.3. Carbon–Sulfur Bond Formation

Alcohols can be converted into thiols by reaction of the alcohol with triphenylphosphine, DEAD, and thiolacetic acid to form a thiol ester, followed by saponification or reduction of the thiol ester to the thiol. (231-244) Important to the success of this reaction is preformation of the DEAD–triphenylphosphine

adduct at 0° before addition of the thiolacetic acid and the alcohol, which prevents nucleophilic addition of the thioacid to DEAD. (231) While complete inversion occurs with optically pure 2-octanol, (231) 3- β -cholestanol, (231) ethyllactate, (232) methyl phenylacetate, (232) and diethyl malate, (232) significant racemization occurs with ethyl mandelate (69% ee), (232) mandelic acid (85% ee), (233) lactic acid (68% ee), (233) and 2-hydroxy-3-phenylpropionic acid (52% ee). (233) In the last three, involvement of an α -lactone intermediate appears to be the cause of racemization. (233) Other nucleophiles used to form carbon–sulfur bonds

include thiocyanate (Eq. 4), (245) thiophenol (Eq. 4), (244-247) thioamides (Eq. 5), (248, 249) thioureas, (250) zinc N, N-dimethyldithiocarbamate, (251) alkyl thiols, (252) heterocylic thiols (Eq. 6), (253, 254) and dithioesters (Eq. 7). (255)

3.4. Carbon-Halogen Bond Formation

Alcohols are converted into halides using DEAD/triphenylphosphine along with an alkyl or acyl halide. (245) Two possible reaction pathways are shown. In

the first pathway the zwitterionic intermediate **51** is alkylated to form the azaphosphonium intermediate **52** with the halide counterion. The transfer of phosphorus occurs from **52** to the alcohol to form the oxyphosphonium

intermediate 53, with X⁻ perhaps serving as a basic catalyst. S_N2 reaction of 53 with X⁻ produces the inverted halide. The second pathway differs in that phosphorus transfer occurs from the zwitterionic intermediate 51 to form the oxyphosphoni um intermediate 53 and hydrazine anion 54. The hydrazine anion is then alkylated with RX to generate X⁻, which reacts with oxyphosphonium intermediate 53 to produce the inverted halide. In the latter mechanism an expected competing side reaction would be reaction of 53 and 54, a commonly observed reaction when no acid or alkylating agent is present. (256)

The lack of this as a competing side reaction in the absence of acid is one piece of evidence to disfavor the second mechanism. Intermediate phosphoranes, which have been shown to form with hindered alcohols in the absence of acid, may also play a role. (12-16)

The intermediate oxyphosphonium salts from several hindered carbohydrates have been isolated and characterized. (10, 257) Heating the oxyphosphonium salt in toluene results in S_N2 displacement for $X^- = I$, but rearrangements

when $X^- = Br$, CI because of attack of X^- on the isopropylidene protecting group.

Besides alkylating or acylating agents, several other sources of halide ion can be used in conjunction with DEAD/triphenylphosphine. The halide may be supplied by an ammonium salt such as pyridinium hydrochloride or hydrobromide, methoxyamine hydrochloride, or 2-amino-5-bromothiazole hydrobromide. (258) In these cases the zwitterionic intermediate **51** is protonated by HX to liberate X^- for the reaction. The mildness of this procedure is demonstrated by formation of the penam **55** in 85% yield when no other method was successful. (258) The source of halide may also be methylene chloride

as solvent (259) or methylene bromide in benzene solution. (260) Triethyloxonium tetrafluoroborate is used as a source of fluoride. In the one example reported,

retention of configuration occurred. (261)

Primary and secondary alcohols react with triphenylphosphine, DEAD, and zinc halides to produce alkyl halides in 66–90% yields. (251, 262) Formation of 2-phenethyl chloride from the corresponding alcohol with no elimination indicates the mildness of the procedure. (262) Lithium halides, including F, CI, Br, and I, or also lithium cyanide, react with alcohols in the presence of triphenylphosphine/DEAD to give the corresponding halides or nitrile in

50–96% yields. (263) Water (or HX) may play a role in these reactions. In the reaction of 4-octanol with lithium tosylate, triphenylphosphine, and DEAD, a 78% yield of the expected tosylate **56** was formed. However, when the lithium tosylate was rigorously dried, only 10% of **56** was formed, and the major product was the DEAD addition product **57**. (182) Optically active secondary

alcohols are converted to inverted iodides and bromides in 65–91% yields using MeX, triphenylphosphine, or tri-n-butylphosphine, with the DEAD substitute 4-methyl-1,2,4-triazolidine-3,5-dione (**58**). (264)

3.5. Carbon–Carbon Bond Formation

Use of the Mitsunobu reaction to form carbon–carbon bonds is limited to compounds having highly acidic C - H bonds, such as β -diketones, (265) β -ketoesters, (265) α -cyanothiolesters, (266) and α -cyanoesters. (265) β -Diesters are not acidic enough to undergo reaction. (265)

Alkylation of ethyl cyanoacetate occurs in 43–83% yields with primary and secondary alcohols provided the DEAD–triphenylphosphine adduct is preformed. Dialkylation occurs to the extent of 3–21%. (265) Reaction of ethyl acetoacetate

with 2-propanol and the preformed DEAD-triphenylphosphine adduct at room temperature gives 17% O-alkylated product **59** plus the DEAD addition products **60** and **61**. No C-alkylation occurs. Reducing the temperature to -10° to -20° increases the yield of **59** to 35%. (265) Compounds **60**

CH₃COCH₂CO₂Et + *i*-PrOH $\xrightarrow{\text{DEAD, PPh_3}}$ *i*-PrO rt CH₃ CHCO₂Et CH₃ 59 (17%) *i*-Pr

and **61** may be formed from the oxyphosphonium ion **62**. In the absence of an alcohol, **60** is formed in 68% yield. (265) Methyl acetoacetate undergoes

reaction with optically active 2-octanol at -30° giving an O/C alkylation ratio of 90/10 with 15% racemization. (267) Alkylation with 1-phenyl-1-ethanol gives a 55/45 C/O ratio with 5% racemization. (267) The C/O ratio is 40/60 with 1-(4-nitrophenyl)-1-ethanol with <10% racemization; the overall yield of alkylated products is 24%. (268, 269)

Alkylation of 1,3-cyclohexanedione with 2-propanol in the presence of DEAD/triphenylphosphine gives exclusively *O*-alkylation in 81% yield. (265) Alcohol **63** undergoes reaction with (*S*)-*tert*-butyl cyanothiolacetate to provide a 2:1 mixture of *C/O* products in overall 54% yield. (266) Intramolecular formation

of a fused cyclopropane ring via a Mitsunobu reaction is a key step in the syntheses of the antitumor antibiotic CC-1065 and related compounds. 270–273a

Carbon–carbon bond formation at the 3 position of the tricyclic indole shown below can be accomplished via an intramolecular S_N2' reaction by treatment with DEAD/triphenylphosphine/ NaH in THF. The Z isomer reacts faster than the *E* isomer and gives a better yield (72% vs. 34%), which is probably due to the antiperiplanar relationship between the 2,3-indole double bond and the developing vinyl group. 273b

Nitriles are formed via reaction of alcohols with DEAD/triphenylphosphine and hydrogen cyanide. (245) Oleyl alcohol reacts with lithium cyanide/DEAD/triphenylphosphine to give the corresponding nitrile in 58% yield. (263)

3.6. Ambident Nucleophiles

Ambident alkylations have been briefly discussed in previous sections, including *N*- vs. *O*-alkylation of hydroxamic acids, carboxamides, and nucleotide imides, and *C*- vs. *O*-alkylation of β -diketones and β -ketoesters. Further examples of ambident reactivity are described below.

N-Alkylation predominates over *S*-alkylation in the reaction of thiouracil **64** with 2-phenylethanol. (250) Competitive *N*-alkylation of the diazenes **65** occurs

with product ratios ranging from 2:1 to 1:2 depending on the alcohol. (274) Both *O*- and *S*-alkylation occur in the Mitsunobu reaction of alcohols with phosphorothioic acid **66**. With primary alcohols the *S*-alkylated product is formed nearly exclusively, but with secondary alcohols nearly equal amounts of products are formed. (275) *N*,*O*-Phthaloylhydroxylamine (**67**) undergoes reaction with

2-cyclohexenol to give 40% *N*-alkylated product and 35% *O*-alkylated product. (89) Reaction of **68** with **67** gives 28% β *C*–*N* product and 33% β *C*–*O*

product. The anomer **69** undergoes reaction to give only α *C*–*O* product in 58% yield. (89) Hydroxamate **70** reacts with a primary alcohol almost exclusively on oxygen, while hydroxamate **71** reacts primarily on nitrogen. (276)

3.7. Dehydration to Form Alkenes

Addition of triphenylphosphine/DEAD to an alcohol in the absence of a nucleophile leads to formation of alkenes. (277-282) Alkenes can be major side

products in esterification reactions. Use of more acidic carboxylic acids (i.e., less basic carboxylic anions as nucleophiles) such as trifluoro- and dichloroacetic acids reduces the amount of elimination product. (7)

erythro-3-Hydroxycarboxylic acids undergo *anti* elimination to form *E* alkenes in 80–95% yields (Eq. 8). Under the same conditions,

threo-3-hydroxycarboxylic acids form Z alkenes when R² is an alkyl group, but form E alkenes when R² is an electron-donating group such as 4-anisyl (Eq. 9). The latter is rationalized by invoking competitive E1 and E2 mechanisms, with

erythro

the E1 mechanism predominating when R^2 is electron donating. (283, 284) Hindered *cis*-1,2-diols eliminate to form enols which tautomerize to ketones. (285, 286)

3.8. Other Reactions

In isolated instances the outcome of the Mitsunobu reaction is alcohol oxidation rather than substitution. (228, 287, 288) With aromatic α -hydroxycarbonyl compounds, oxidation is the predominant reaction. (228) The highest yield of oxidation product occurs with a DEAD/triphenylphosphine ratio of 2:1 and with compounds of increasing α –H acidity (Eq. 10). Attempted condensation

$$\begin{array}{c} H & OH \\ Ph & CO_2Me \end{array} \xrightarrow{DEAD, PPh_3} & Ph & CO_2Me \end{array}$$
(10)

of ethyl nitroacetate with alcohols leads instead to oxidation of the alcohols to ketones or aldehydes, presumably arising from *O*-alkylation of the nitroacetate. (288)

Phosphazenes are prepared from reaction of DEAD/triphenylphosphine with carboxamides, sulfonamides, and phosphinamides. 289–292a

Treatment of primary nitro groups in dichloromethane with Sn(SPh)₄, tributylphosphine, and DEAD affords the corresponding nitriles in a combined process of deoxygenation and dehydration. The same result can be obtained in a slower reaction using only tributylphosphine (2 equiv) and DEAD (1 equiv), the proposed mechanism of which is shown. 292b

$$\operatorname{RCH}_{2}\operatorname{NO}_{2} + \operatorname{DEAD} + \operatorname{Bu}_{3}\operatorname{P} \longrightarrow \begin{bmatrix} \operatorname{Bu}_{1} \operatorname{Bu}_{2} \\ + \operatorname{O-P}_{N} \operatorname{O-P}_{N} \\ -\operatorname{N}_{1} \operatorname{Bu}_{2} \operatorname{O}_{2}\operatorname{Et} \end{bmatrix} \xrightarrow{-\operatorname{DEAD}_{-\operatorname{Bu}_{3}}\operatorname{PO}_{2}\operatorname{Et}}$$

$$\stackrel{R}{\longrightarrow} N \stackrel{OH}{\longrightarrow} \frac{DEAD/Bu_{3}P}{R-C=N}$$

4. Comparison with Other Methods

The manipulation of the alcohol functional group is a synthetic goal which has been approached by a wide variety of methods. Most of these methods rely on activation of the hydroxy group followed by displacement with an appropriate nucleophile. In the Mitsunobu reaction the alcohol activation is accomplished via an oxyphosphonium salt. In this section alternatives to the Mitsunobu reaction are discussed and compared in terms of yield, stereoselectivity, and ease of operation.

In general terms the advantages of the Mitsunobu method include the following: (1) generally good yields with high stereoselectivity (inversion); (2) experimental ease since the alcohol activation and displacement reactions take place in one pot, often at room temperature; (3) compatibility with a wide range of functional groups, as outlined in the Scope and Limitations section.

One of the major drawbacks of the Mitsunobu reaction is the difficulty of removing the redox byproducts triphenylphosphine oxide and di(ethoxycarbonyl)hydrazine. This becomes a major concern in large-scale applications where product purification by chromatography is not feasible.

4.1. Inversion of Alcohols

Other than the Mitsunobu reaction, there are several methods for inverting alcohols. Four procedures involve formation of a sulfonate ester followed by: (1) displacement with a cesium, (293-297) potassium, (298, 299) or tetraalkylammonium carboxylate (300) followed by hydrolysis; (2) displacement with potassium superoxide; (301-303) (3) displacement with potassium nitrite; (304, 305) or (4) displacement with nitrate ion followed by reduction (306, 307) (Eq. 11). Similarly, imidazolyl sulfonates, prepared by reaction of the alcohol with N,N' -sulfuryldiimidazole, are displaced with inversion of configuration by benzoate (Eq. 12). (308-310) Some documented cases where the alternative methods give better results than the Mitsunobu reaction are described below. For inversion of the homoallylic alcohol (*R*)-ricinealaidic acid (72) the Mitsunobu reaction gives racemization, whereas mesylate formation, substitution with cesium propionate, and hydrolysis with lithium hydroxide give 51% inverted alcohol

and 30% elimination product. (293) Mitsunobu reaction with **73** gives predominant formation of elimination product and cyclic ether, while mesylate formation followed by cesium acetate/18-crown-6 ether gives a 70% yield of inverted ester with only 5% elimination product. (295) Other examples include inversion of capnellene-8 α ,10 β -diol via the mesylate and potassium superoxide displacement, (303) inversion of 3 α -hydroxygibberellins using reaction of cesium acetate/18-crown-6 ether on the mesylate, (297) inversion of a crinine precursor using mesylate formation followed by cesium acetate, (296) and inversion of a swainsonine precursor by making the trifluorosulfonate followed by reaction with potassium acetate/18-crown-6 ether. (299) Conversion of alcohols to isourea ethers followed by esterification and hydrolysis is a mild and simple Mitsunobu alternative (Eq. 13). (311) Overall yields range from 45 to

$$\begin{array}{c} OH \\ R^{1} \\ R^{2} \\ R^{2} \end{array} + C_{6}H_{11}N = C = NC_{6}H_{11} \\ \hline \begin{array}{c} CuCl \\ 3 \text{ days, rt} \end{array} \\ R^{1} \\ R^{2} \\ R^{2} \end{array} \begin{array}{c} NHC_{6}H_{11} \\ R^{2} \\ \hline \begin{array}{c} RCO_{2}H, PhCH_{3} \\ \hline \end{array} \end{array} \right)$$

$$\begin{array}{c} O_2 CR \\ \downarrow \\ R^1 \\ R^2 \end{array} + C_6 H_{11} NHCONHC_6 H_{11} \\ \hline MeOH \\ R^1 \\ \hline R^2 \end{array} \begin{array}{c} OH \\ \downarrow \\ R^1 \\ R^2 \end{array}$$
(13)

75%. The method is applicable to imide alkylations. (312) An attractive feature of this method is that the dicyclohexylurea byproduct is insoluble and easily removable by filtration.

When alcohol activation/displacement methods do not work, inversion by means of oxidation to a ketone and selective reduction is sometimes a viable alternative (Eq. 14). (313-316) Tertiary alcohols cannot be inverted using the

Mitsunobu method or other alcohol activation/displacement methods. As an alternative, tertiary vinyl alcohols are inverted by a [2,3] sulfoxide sigmatropic rearrangement (Eq. 15). (317, 318)

4.2. Carbon–Sulfur Bond Formation from Alcohols

Alternatives to the Mitsunobu reaction for preparing inverted thiols from alcohols include: (1) formation of a sulfonate ester, displacement with a cesium thiocarboxylate, followed by reduction or hydrolysis; (232) (2) formation of 2-alkoxypyridinium salts using 2-fluoro-1-methylpyridinium tosylate, displacement with thiolacetate (319) or sodium *N*, *N*-dimethylthiocarbamate, (320) and reduction (Eq. 16); (3) preparation of alkoxytris(dimethylamino)phosphonium hexafluorophosphate

salts followed by reaction with thiolate, thiocyanate, or thiolacetate (Eq. 17); (321-324) the byproducts are easy to remove since they are water soluble; (4) reaction of the alcohol with a disulfide and tri-*n*-butylphosphine (Eq. 18); (325) (5) reaction of the alcohol with tri-*n*-butylphosphine and an *N*-alkyl- or

N-arylthiosuccinimide; (326) clean inversion of configuration is demonstrated by formation of 3 α -(phenylthio)cholest-5-ene in 81% yield from cholesterol; and (6) activation of an alcohol using aminotriphenylphosphonium

salts followed by displacement with a thiol (Eq. 19). (327) For carbon–sulfur bond formation from alcohols, the Mitsunobu reaction has found the most use in formation of inverted thiolacetates which are usually hydrolyzed or reduced to free thiols. The Mitsunobu and mesylate/cesium carboxylate procedures gave similar yields and enantioselectivities in a side-by-side comparison. (232) In the preparation of phenylthio compounds from primary or secondary alcohols the procedures using tri-*n*-butylphosphine with diaryl disulfides or *N*-(arylthio)succinimide have found the widest use. (328)

4.3. Carbon–Oxygen Bond Formation

As alternatives to the Mitsunobu reaction, cyclic ethers are prepared from diols by use of diethoxytriphenylphosphorane, (329, 330) pentaethoxyphosphorane, (330, 331) diaryldialkoxysulfuranes, (332, 333) and the reagent systems triphenylphosphine/carbon tetrachloride (334, 335) and tris(dimethylamino)phosphine/carbon tetrachloride. (336, 337) A comparative study of the cyclodehydration of chiral diols using triphenylphosphine/carbon tetrachloride/potassium carbonate, diethoxytriphenylphosphine, and triphenylphosphine/DEAD revealed that (*S*)-propane-1,2-diol and (*R*)-pentane-1,4-diol cyclize with retention of configuration while (*S*)-phenylethane-1,2-diol gives primarily racemic styrene oxide with all three reagent systems. (181) Two noteworthy reactions are the following: The sulfurane **74** promotes the epoxidation of the highly hindered bis(tertiary) alcohol (Eq. 20). (333) Diethoxytriphenylphosphine

converts the acidic and thermally sensitive diol **75** to the arene oxide in 99% yield, demonstrating the mildness of the reaction conditions. (329)

Aryl alkyl ethers are prepared from reaction of the alcohol with tris(dimethylamino) phosphine/carbon tetrachloride followed by reaction with phenols. (322)

4.4. Carbon–Nitrogen Bond Formation

Formation of azides from alcohols is accomplished using triphenylphosphine/ carbon tetrachloride/lithium azide (338, 339) or tris(dimethylamino)phosphine/ carbon tetrabromide/sodium azide. (321, 340) A comparison of reagents used in the preparation of 5' -azido-5' -deoxythymidine from thymidine indicates that triphenyl phosphine/carbon tetrabromide/lithium azide produces better yields (90%) than triphenyl phosphite/iodomethane/lithium azide (50% yield) or triphenylphosphine/DEAD/lithium azide (36–46% yields). (339)

Aziridines, azetidines, and pyrrolidines are prepared by action of triphenylphosphine dibromide (341-343) or triphenylphosphine/carbon tetrachloride/triethylamine (344, 345) on the appropriate aminoalkanols.

For large-scale preparation of β -lactams, cyclization of a β -mesylate is a viable alternative to the Mitsunobu cyclization since chromatographic separation of the redox byproducts is not required (Eq. 21). (346, 347)

4.5. Formation of Carbon–Halogen Bonds

Other than the Mitsunobu reaction, alcohols are converted to halides by several methods. Many of these methods involve mechanisms similar to the Mitsunobu reaction in that an oxyphosphonium salt formed from the alcohol is then converted to the halide by an S_N2 displacement. These methods include the reagents triphenyl phosphite/iodomethane, triphenylphosphine/halogen adducts, triphenylphosphine/carbon tetrahalide,

triphenylphosphine/2,4,5-triiodoimidazole,

triphenylphosphine/*N*-halosuccinimide, and tris(dimethylamino) phosphine/carbon tetrachloride. A comprehensive review of these reagents was published in 1983. 6a

Activation of the alcohol is also accomplished by formation of imidazolyl sulfonate, (308-310) trifluoromethanesulfonates, 348–349 imino esters, (350) chlorosulfates, (351) 2-alkoxybenzoxazolium salts, (352) and 2-alkoxybenzothiazolium salts, (353) followed by S_N2 displacement with halide.

Diacetone-D-glucose, having a hindered secondary hydroxy group, serves as a good example to compare the various reagents. The inverted iodide (Eq. 22) is prepared in moderate to good yields by nearly all the reagents, as shown

in Table A. By contrast, none of the methods give the inverted chlorides or bromides in a appreciable yields. With the phosphonium reagents, rearrangement of the 5,6-isopropylidene groups or elimination are the major reaction pathways.

Yield (%)	Refs
_	354
70	10
60	355
78	355
67	356
62	356
45	356
87	348
71	308
62	357
Ð	
30	358
7ª	10
42 ^b	349
0ª	359
0ª	360
e	
5ª	10
0 ⁶	361
n 0	350
22 ^b	349
	Yield (%)

Table A. Conversion of Diacetone-D-Glucose to the Inverted Halides (Eq.22)

^aThe major reaction is rearrangement to 6-halide.

^{*b*}The major side reaction is elimination.

4.6. Carbon–Carbon Bond Formation

C-Glycosides are synthesized by reaction of malonate anions with sugar hydroxy groups that have been activated as alkoxytris (dimethylamino)

phosphonium salts. (362) Alcohols are converted to nitriles using tris(dimethylamino)phosphine

/carbon tetrachloride/potassium cyanide (321, 363) or triphenylphosphine/carbon tetrachloride/potassium cyanide. (364, 365)

Alcohols activated as 1-ethyl-2-alkoxypyridinium salts react with Grignard reagents to form carbon–carbon bonds. (366)

5. Experimental Considerations

Although optimal conditions for the Mitsunobu reaction depend on the substrate alcohol and the nucleophile, a few generalities are outlined below.

5.1.1.1.1. Solvent

The majority of Mitsunobu reactions are carried out in tetrahydrofuran solution. However, several other solvents have been used with good results, including dioxane, (62, 178, 367) dichloromethane, (368-370) chloroform, 175–176 diethyl ether, (52, 54, 86, 96, 99, 371-373) dimethylformamide, (139, 176, 177, 374) toluene, (34, 35, 375, 376) benzene, (48, 49, 53, 90, 106, 111, 123, 128, 377-383) and hexamethylphosphoramide. (138, 384) The dipolar aprotic solvents have found use with carbohydrates that are insoluble in the typical nonpolar solvents.

5.1.1.1.2. Phosphine

Triphenylphosphine has been used in more than 90% of the reported Mitsunobu reactions. Tri-*n*-butylphosphine, (215, 248, 385, 386) substituted triarylphosphines, (7) tris(dimethylamino)phosphine, (215) trialkyl phosphites, (170, 180, 215, 219) triphenyl phosphite, (216) phenoxydiphenylphosphine, (216) and diphenoxyphenylphosphine (216) have found limited use. Use of diphenyl(2-pyridyl)phosphine (387) and (4-dimethylamino)diphenylphosphine (197) facilitate product isolation since the resulting phosphine oxide is removed by aqueous acid washing. Use of polymeric triphenylphosphine eliminates the problem of phosphine oxide removal from the product. 388a

5.1.1.1.3. Azodicarboxylate

Diethyl and diisopropyl azodicarboxylates are used in most Mitsunobu applications and generally can be used interchangably. Dimethyl azodicarboxylate is used less often, but has the advantage that the byproduct hydrazine can be removed by aqueous extraction. (170) Polymer-supported alkyl azodicarboxylates can be used, and have the advantages of facilitating product purification and of being reusable. 388b Oxidants other than azodicarboxylates successfully employed in Mitsunobu reactions include 4-methyl-1,2,4-triazolidine-3,5-dione (58), (264) dibenzoyl peroxide, (133) dimethyl ketomalonate, (389) and 3-methylbenzothiazole-2-selone. (390)

5.1.1.1.4. Nucleophile

For inversions, typical carboxylic acid nucleophiles include benzoic acid, acetic acid, formic acid, 4-nitrobenzoic acid, and 3,5-dinitrobenzoic acid. The latter two are often used since the corresponding esters are generally crystalline compounds which can be readily purified. For compounds with acidic or basic labile functionalities such as β -lactams, formic acid or phenoxyacetic acid (28) are used since the corresponding esters are readily hydrolyzed. Mosher esters

are prepared using α -methoxy- α -(trifluoromethyl)phenylacetic acid. (126, 127, 391, 392)

5.1.1.1.5. Temperature

Most Mitsunobu reactions are carried out between 0° and room temperature. More hindered secondary alcohols, such as those found in carbohydrates, often require temperatures of 70–100°. An initial temperature of –50° gives increased selectivity in the esterification of an anomeric center in carbohydrates. (50)

5.1.1.1.6. Order of Addition of Reagents

Typically, triphenylphosphine, the alcohol, and the nucleophile are dissolved in the solvent and DEAD is added dropwise to the solution. (5) Alternatively, DEAD and triphenylphosphine first to form are reacted the DEAD-triphenylphosphine adduct, followed by addition of the alcohol and the nucleophile. (50, 231) Since DEAD is a strong oxidant, Michael acceptor, and dienophile, it is important that no excess DEAD be present in the reaction. This is accomplished either by preforming the DEAD-triphenylphosphine adduct or DEAD slowly to the reaction mixture so by adding that the DEAD-triphenylphosphine adduct forms while keeping the DEAD concentration low. In tetrahydrofuran and dichloromethane solution, formation of the DEAD-triphenylphosphine adduct is fast, completing within minutes at -20° . (7)

6. Experimental Procedures

6.1.1.1. (4S)-2,2-Dimethyl-4-[(2R)-2-(4-nitrobenzoyloxy)pent-4-enyl]-1,3-dioxol ane (Esterification with Inversion) (34)

To a stirred suspension of triphenylphosphine (5.41 g, 0.0206 mol) and 4-nitrobenzoic acid (3.45 g, 0.0206 mol) in toluene (60 mL) cooled to -30° was added a solution of (4*S*)-2,2-dimethyl-4-[(2*S*)-pent-4-enyl-2-ol]-1,3-dioxolane (3.2 g, 0.0172 mol) in toluene (10 mL). A solution of diethyl azodicarboxylate (3.3 mL, 0.0206 mol) in toluene (30 mL) was added dropwise over 15 minutes to the vigorously stirred mixture while the temperature was maintained at -30° . When the addition was complete the mixture was allowed to warm gradually to 0° over 1 hour whereupon saturated aqueous sodium bicarbonate (75 mL) was added. The aqueous phase was separated and extracted with ether (2 × 75 mL). The organic extracts were combined, dried, and concentrated. To the residue was added ether (25 mL) and hexane (75 mL) whereupon the bulk of the triphenylphosphine oxide was filtered off. Concentration of the residue gave a viscous oil which was purified by chromatography (ether–hexane 1:4) to give the 4-nitrobenzoate ester (5.23 g. 90%) as colorless needles from cold

hexane, mp 28–30°; $[\alpha]_{D}^{21} - 44.8^{\circ}$ (c 2.5, CHCl₃); v _{max} (CHCl₃) 1725, 1608,

1530, 1352, 1275, 920, 874, 840 cm⁻¹; ¹H NMR δ 8.1–8.4 (4H, m), 5.5–6.1 (1H, m), 5.35 (1H, m), 5.18 (1H, m), 5.05 (1H, m), 3.9–4.35 (1H, m), 4.0 (1H, dd, J = 6, 6 Hz), 3.55 (1H, dd, J = 5, 7.7 Hz), 2.05 (2H, m), and 1.32 and 1.38 (3H each, s); Anal. Calcd. for C₁₇H₂₁O₆N : C, 60.88; H, 6.31; N, 4.17. Found: C, 60; 75; H, 6.35; N, 4.2

6.1.1.2. 2,3,4,6-Tetra-O-acetyl-1-O-benzoyl-D-glucose (Selective Esterification of an Anomeric Center (50)

To a solution of triphenylphosphine (0.98 g, 3.7 mmol) in dry tetrahydrofuran (6 mL) at –50°, under an argon atmosphere, was added DIAD (0.74 mL, 3.7 mmol). The mixture was stirred at this temperature for 10 minutes, whereupon a thick yellow precipitate formed. The hemiacetal 2,3,4,6-tetra-*O*-acetyl-D-glucose (1.0 g, 2.9 mmol) was added and the stirring continued at –50° for a further 10 minutes before benzoic acid (0.46 g, 3.8 mmol) was added. The mixture was allowed to warm slowly to room temperature over a period of 2 hours, the solvent removed in vacuo, and the residue purified by flash chromatography (ethyl acetate/hexane 1:4) to furnish the title compound (1.04 g, 80%) as a 2:1 mixture of anomers. Crystallization from ether gave the pure β -anomer (mp 143–144°); [α]_D – 27.6° (*c* 1.0, CHCl₃).

6.1.1.3. 2-(+)-Benzoyloxyoctane (Esterification using Polymer-Supported Triphenylphosphine) 388a

Benzoic acid (3.05 g, 2.5 mmol) and polymer-supported triphenylphosphine (1.5 g, 4.4 mmol contained P) were weighed into an oven-dried 50-mL flask. Dry tetrahydrofuran (10 mL) was then added under a nitrogen atmosphere, followed by 2-(–)-octanol (3.25 g, 2.5 mmol) diluted with tetrahydrofuran (5 mL). The flask was cooled on a 25° water bath while DEAD (6.09 g, 3.5 mmol) was added by syringe over 2–3 minutes. The polymer darkened in appearance, but little yellow color from the DEAD reagent remained in solution. TLC indicated complete reaction within 10 minutes. The mixture was stirred 4 hours at ambient temperature and then filtered. The polymer was thoroughly washed with ether. Evaporation of the solvent afforded an oily white solid containing the ester and the *sym*-dicarbethoxyhydrazine. The mixture was transferred to and eluted from a shortpath silica column using 5–10% ether in hexane (the majority of the hydrazine product is insoluble in this solvent). Removal of solvent after chromatography gave the title compound in 65% yield.

6.1.1.4. (3aS,6S,7aR)-3-[Benzyloxy)methoxy]hexahydro-6-(2-hydroxy-1-meth ylethyl)-2(3H)-benzofuranone (Lactonization of a Secondary Alcohol in the Presence of a Primary Alcohol) (150)

A magnetically stirred solution of tetrahydrofuran (310 mL) and triphenylphosphine (5.2 g, 19.8 mmol) at -20° under nitrogen was treated with diethyl azodicarboxylate (2.3 mL, 14.8 mmol) in tetrahydrofuran (10 mL). After 30 minutes at -20° , diastereomeric diols

(1S,2S,4S)-7-[(benzyloxy)methoxy]-2,9-dihydroxy-p-menthane-7-carboxylic acid (2.6 g, 7.39 mmol) in tetrahydrofuran (50 mL) were added via syringe pump over 4.5 hours while carefully maintaining the reaction temperature at -20°. The reaction mixture was quenched at -20° with saturated aqueous sodium chloride (100 mL) and 30% hydrogen peroxide. After dilution with ether (500 mL) the layers were separated and the aqueous layer was extracted with additional ether (3 × 200 mL). The combined organic layers were dried with magnesium sulfate and filtered, and the solvents were removed in vacuo. Flash chromatography (70/30 ethyl acetate/hexanes) afforded a mixture of epimeric lactones contaminated with diethyl hydrazodicarboxylate. Analytical samples were obtained by medium pressure liquid chromatography (75/25 ethyl acetate/hexanes) α -isomer: white crystals, mp 83-84°; IR (thin crystalline film) 3500, 2900, 1780, 1500, 1450, 1380, 1340, 1275, 1200, 1160, 1060, 1025, 960, 900, 855, 740, 695 cm⁻¹; ¹H NMR (CDCl₃) δ 7.30 (s, 5H), 4.85 (AB_q, J_{AB} = 8.0 Hz, 2H), 4.85 (br m, 1H), 4.6 (s, 2H), 3.90 (br s, 1H), 3.55 (m, 2H), 2.20 (br d, 2H), 1.90–1.00 (m, 7H), 0.95 (d, J = 6.6 Hz, 3H); MS, m/e 335 (M + H, isobutane).

6.1.1.5. 1-Methoxy-8-O-(1-penten-3-yl)anthraquinone (Preparation of an Alkyl Aryl Ether) (393)

To a stirred solution of 1-hydroxy-8-methoxyanthraquinone (20 g, 78.7 mmol), triphenylphosphine (26 g, 95.9 mmol), and 1-penten-3-ol (12 mL, 10.1 g, 0.117 mol) in dry tetrahydrofuran (300 mL) at 0° was added dropwise from an addition funnel diethyl azodicarboxylate (20 mL, 20.12 g, 0.127 mol) dissolved in dry tetrahydrofuran (50 mL). After addition, the mixture was stirred at room temperature for 1 hour. Tetrahydrofuran was removed under reduced pressure to give a dark red syrup which was filtered through neutral alumina with dichloromethane and then chromatographed on silica gel (3:1 hexane/ethyl acetate) to provide the yellow ether (22.1 g, 87%); mp 97–98.5°; ¹H NMR (CDCl₃) δ 1.10 (t, 3H, *J* = 7.4 Hz), 1.98 (m, 2H), 4.01 (s, 3H), 4.68 (m, 1H), 7.28 (m, 2H), 7.59 (m, 2H), 7.81 (m, 2H). High resolution mass spectrum: Calcd. for C₂₀H₁₈O₄: 322.1204. Found: 322.1201.

6.1.1.6. Allyl(6S,7S)-8-Oxo-3-[2-(phenylseleno)ethyl]-7-(tritylamino)-1-aza-4-o xa-bicyclo[4.2.0]oct-2-ene-2-carboxylate (Formation of a Cyclic Enol Ether) (394)

To a solution of allyl

2-[(3S,4S)-4-hydroxymethyl-2-oxo-3-tritylamino-1-aze-tidinyl]-3-oxo-5-phenyls elenopentanoate (6.49 g, 9.73 mmol) and triphenylphosphine (2.68 g, 1.05 equiv) in dry tetrahydrofuran (270 mL) under argon was added diisopropyl azodicarboxylate (2.07 mL, 1.05 equiv). After 15 minutes the solvent was removed, and the residual oil was chromatographed to afford the O-2-isocephem (5.30 g, 73%) as white crystals (from ethyl acetate/hexane): mp 128–129°; IR (KBr) 1770, 1710, 1610 cm⁻¹; ¹H NMR (CDCl₃) δ 2.71–3.35 (m, 8H), 4.56–4.97 (m, 3H), 5.20–5.42 (m, 2H), 5.83–6.00 (m, 1H), 7.19–7.49 (m, 20H).

6.1.1.7. Methyl 4-Acetamido-2,3-anhydro-4,6-dideoxy- α -D-allopyranoside (Formation of an Epoxide) (175)

Triphenylphosphine (2.0 g) was added to a solution of methyl 4-acetamido-4,6-dideoxy- α -D-glucopyranoside (630 mg, 2.9 mmol) in ethanol-free chloroform (50 mL). After stirring 15 minutes, diethyl azodicarboxylate (1.3 g) was added dropwise. The mixture was stirred 4 hours at room temperature and then allowed to stand overnight. The solvent was removed and the residue subjected to column chromatography on silica gel (60 g). Balast compounds were eluted with benzene–ethanol (100:2); product was isolated in 99% yield (570 mg); mp 185–186° (from ethyl acetate); [a]_D + 205° (CHCl₃). ¹H NMR (CDCl₃) δ 1.15 (3H, d, *J*₅₆ = 6.1 Hz, H-6), 2.00 (3H, s, MeCON), 3.35 (dd, *J*₂₃ = 4.0 Hz, H-3), 3.40 (3H, s, MeO), 3.50 (dd, *J*₁₂ = 3.2 Hz, H-2), 3.59 (dq, *J*₄₅ = 9.5 Hz, H-5), 4.15 (dt, *J*₃₄ = 1.8 Hz, H-4), 4.86 (d, H-1), 6.24 (d, *J*_{4-NH} = 9.0 Hz, NH).

6.1.1.8. exo-2-Phthalimido-7-methoxybenzonorbornene (Phthalimide as a Nucleophile) (205)

A solution of *endo*-2-hydroxy-7-methoxybenzonorbornene (600 mg, 3.15 mmol), phthalimide (640 mg, 4.3 mmol), and triphenylphosphine (1.1 g, 4.2 mmol) in tetrahydrofuran (25 mL) was treated with diethyl azodicarboxylate (0.65 mL, 4.12 mmol). The reaction was stirred at room temperature under argon for 72 hours. Brine (30 mL) was added and the layers separated. The aqueous layer was washed with ether $(4 \times 20 \text{ mL})$. The combined organic pool was dried over sodium sulfate, filtered, and evaporated in vacuo to give 2.55 g of a viscous oil, which was purified by flash chromatography with dichloromethane as the eluant to give 850 mg (84%) of product as a white solid: mp 133–134°; ¹H NMR (CDCl₃) δ 7.85–7.55 (m, 4H, phthalimide ArH), 7.08 (d, 1H, J = 8.0 Hz, H-5), 6.88 (d, 1H, J = 2.3 Hz, H-8), 6.66 (dd, 1H, J = 8.0 and 2.3 Hz, H-6), 4.33–3.97 (m, 1H, CHN), 3.77 (s, 3H, OMe), 3.55–3.40 (m, 2H, bridgeheads), 2.88–2.45 (m, 2H, methylene), 2.10–1.45 (m, 2H, methylene); IR (KBr) 2970, 1709, 1612, 1478, 1466, 1370, 1354, 1331, 1289, 1246, 1233, 1128, 1089, 1030, 719, 662 cm⁻¹; EIMS, m/e (rel. intensity) 319 (3.8, M⁺), 146 (100), 131 (20.4), 115, (7.0), 103 (16.5), 77 (8.6).

6.1.1.9. 4-Ethoxycarbonyl-2-(3'-cyano-1'-(R)-azidoprop-1'-yl)thiazole (Formation of an Azide) (395)

To a stirred solution of

4-ethoxycarbonyl-2-(3'-cyano-1'-(S)-hydroxyprop-1'-yl)thiazole (13.2 g, 55 mmol) and triphenylphosphine (15.9 g, 60.5 mmol) in toluene (225 mL) at room temperature were successively added a solution of hydrazoic acid in absolute toluene (110 mL, 60.5 mmol) and diethyl azodicarboxylate (10.5 g, 60.5 mmol) in absolute toluene (110 mL). The reaction was stirred at room temperature overnight and the solvent was removed in vacuo. The residue was treated with ethyl acetate/petroleum ether (1:1) to remove triphenylphosphine oxide. The filtrate was evaporated and the residue was first filtered on silica gel (ethyl acetate/petroleum ether, 1:1) followed by basic aluminum oxide (ethyl acetate/petroleum ether, 3:7) to give the product azide

(13.1 g, 90%); mp 49–50°; $R_{\rm f} = 0.57$ (ethyl acetate); $[\alpha]_{\rm D}^{20} + 64.1^{\circ}(c \, 1.2, \, \text{CH}_2\text{Cl}_2);$

ee > 98%; ¹H NMR (CDCl₃) δ 1.43 (t, 3H, *J* = 7 Hz), 2.10–2.87 (m, 4H), 4.48 (q, 2H, *J* = 7 Hz), 5.15 (m, 1H), 8.35 (s, 1H); Anal. Calcd: for C₁₀H₁₁N₅O₂S : C, 45.27; H, 4.18; N, 26.40; S, 12.09. Found: C, 45.34; H, 4.24, N, 26.25; S, 11.90.

6.1.1.10. [(4S)-(Benzyloxycarbonyl)]-N-benzyloxy-2-azetidione (Formation of a β -Lactam) (396)

The monobenzyl hydroxamate of D-malic acid (2.64 g, 8.02 mmol) was dissolved in dry tetrahydrofuran (50 mL). Triphenylphosphine (2.0 g, 8 mmol) was added, followed by diethyl azodicarboxylate (1.26 mL). The solution was stirred at room temperature under a drying tube for 11 hours. The solution was then concentrated to 10 mL and chromatographed on a medium-pressure

apparatus with ethyl acetate-hexanes (1:4 then 1:1) on silica gel. Evaporation

of the rich cut gave the product as an oil (2.4 g, 96%); $\left[\alpha\right]_{D}^{20} - 12.6^{\circ}$ (c 3.6,

MeOH); IR (neat) 1745, 1780 cm⁻¹; ¹H NMR δ 2.8 (m, 2H), 4.1 (m, 1H), 4.95 (s, 2H), 5.2 (s, 2H), 7.32 (s, 5H), 7.5 (s, 5H).

6.1.1.11. (2S)-(+)-Octanethiol (Formation of a Thiol) (231)

Diisopropyl azodicarboxylate (8.33 g, 40 mmol) was added to an efficiently stirred solution of triphenylphosphine (10.50 g, 40 mmol) in tetrahydrofuran (100 mL) at 0°. The mixture was stirred at 0° for 30 minutes, resulting in a white precipitate. (2R)-(-)-Octanol (2.60 g, 20 mmol) and thiolacetic acid (3.04 g, 40 mmol) in tetrahydrofuran (50 mL) were added dropwise over 10 minutes and the mixture was stirred for 1 hour at 0° and 1 hour at 22-25°. A clear yellow solution resulted. The solution was concentrated and then purified by column chromatography over silica gel (elution with hexanes-dichloromethane, 1:1) to give the desired octane thiolacetate (3.70 g, 98%). The thiolacetate (3.00 g, 15.95 mmol) was dissolved in anhydrous ether (25 mL) and added dropwise to a suspension of lithium aluminum hydride (0.61 g, 4.0 equiv) in ether (15 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 22–25° for 0.5 hour and the excess lithium aluminum hydride was destroyed by the careful addition of 1 N hydrochloric acid solution (10 mL). The ether layer was separated and dried over sodium sulfate to give the thiol (2.37 g, 100%) as a clear oil. A purified sample was prepared by distillation (2.05 g, 88.6%), bp 65–70° (15 torr).

6.1.1.12. 3- α -Cholestanyl Fluoride (Formation of a Carbon–Fluorine Bond) (263)

Diethyl azodicarboxylate (1.70 g, 9.8 mmol) was added dropwise with stirring to a 0° solution of triphenylphosphine (2.62 g, 10 mmol) in dry tetrahydrofuran under argon. After 20 minutes lithium fluoride (0.52 g, 20 mmol) was added to the nearly colorless solution followed by 3- β -cholestanol (0.388 g, 1.0 mmol) dissolved in a minimum volume of tetrahydrofuran. The mixture was aged at room temperature until the alcohol was consumed. Upon evaporation of solvent, the residue was poured into water and extracted with ether. The ether extracts were washed with brine, dried over sodium sulfate, and evaporated. Flash chromatography on silica afforded the fluoride in 51% yield.

6.1.1.13. (–)-1(S)-(Bromomethyl)-1-methyl-2 β -vinyl-3 α -isopropylcyclopentane (Formation of a Carbon-Bromine Bond using Zinc Bromide) (397)

A solution of 1(S)-(hydroxymethyl)-1-methyl-2 β -vinyl-3 α -isopropylcyclopentane (0.80 g, 4.4 mmol) and freshly recrystallized triphenylphosphine (3.45 g, 13.2 mmol) in anhydrous tetrahydrofuran (25 mL) was treated with a solution of zinc bromide (0.99 g, 4.4 mmol) in tetrahydrofuran (15 mL) followed by a solution of diethyl azodicarboxylate (2.1 mL, 13.3 mmol) in tetrahydrofuran (15 mL). After 15 minutes, the transparent orange solution became a slurry. The mixture was stirred at room temperature for 16 hours and filtered. Concentration of the filtrate in vacuo gave an orange residue that was purified by chromatography on silica gel (hexane elution) to give the product (0.98 g, 91%) as a colorless oil:

 $[\alpha]_{D}^{23} - 13.98^{\circ}(c 2.9, \text{CHCl}_{3});$ ¹H NMR (300 MHz, CDCl₃) δ 5.61 (ddd, J = 17.1,

10.3, 9.4 Hz, 1H), 5.05 (dd, J = 10.3, 2.1 Hz, 1H), 5.00 (dd, J = 17.2, 2.1 Hz, 1H), 3.38 (d, J = 9.9 Hz, 1H), 3.34 (d, J = 9.9 Hz, 1H), 2.13 (dd, J = 9.6, 9.7 Hz, 1H), 1.89–1.27 (series of m, 6H), 0.96 (s, 3H), 0.90 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.4, 116.6, 54.9, 48.8, 46.5, 45.8, 37.0, 30.0, 24.2, 21.9, 20.7, 18.0; MS, m/z (M⁺ – Br) Calcd. 165.1643, Obsd 165.1685.

6.1.1.14. Methyl

[(5a,6b)(1E,3R)]-5,6-Dihydro-5-[(phenylmethoxy)methoxy)]-6-(3-[(phenylmethoxy)methoxy]-1-octenyl)-4H-cyclopentathiazole-2-pentanoate (Dehydration to Form an Alkene) (278) Methyl(3aR- $(3a\alpha,5\beta,6a,(1E,3R),$

6aα))3a,5,6,6a-tetrahydro-3a-hydroxy-5-[(phenylmethoxy)methoxy]-6-(3-[(phe nylmethoxy)methoxy]-1-octenyl-4*H*-cyclopentathiazole-2-pentanoate (0.60 g) was dissolved in dry tetrahydrofuran (10 mL). Diethyl azodicarboxylate (1.04 g, 6.0 mmol) was added and the solution was cooled to 0°, followed by addition of triphenylphosphine (1.60 g, 6.10 mmol). The reaction was aged for 20 hours, then the solvent was removed, and the residue was partitioned between ether (30 mL) and water (30 mL). The organic layer was separated, washed with brine, and dried. Evaporation gave a gum (3.1 g) which was purified by column chromatography (100 g of silica gel, 33% ethyl acetate/hexane) to give the thiazole (0.38 g, 67%) as a clear oil: IR (CHCl₃) 1730 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.88 (3H, t), 1.20–1.88 (12H, m), 2.37 (2H, t), 2.84 (1H, dd, *J* = 16.0, 4.8 Hz), 2.98 (2H, t), 3.15 (1H, dd, *J* = 16.0, 6.9 Hz), 3.68 (3H, s), 3.86 (1H, m), 4.07 (1H, m), 4.58 (1H, m), 4.50–488 (8H, m), 5.48 (1H, m), 5.76 (1H, m), 7.33 (10H, m); MS (CI) m/e 622 (MH⁺), 484, 408, 364.

7. Tabular Survey

Mitsunobu reactions of alcohols to form carbon–oxygen, carbon–nitrogen, carbon–sulfur, and carbon–halogen bonds are grouped in Tables I–XX and follow the order of the discussion in the Scope and Limitations section. Because of the large number of examples of ester formation, this category has been further broken down into six subcategories that relate to the general nature of the alcohol component: general secondary alcohols, general primary alcohols, alcohols contained in β -lactams, alcohols contained in steroids, alcohols contained in carbohydrates, and allylic alcohols.

Within each table, the compounds are listed according to increasing carbon number, and increasing hydrogen number within a given carbon number. Yields are given in parentheses; numbers not in parentheses are product ratios. A dash indicates that no yields or experimental conditions are given in the reference. Unless otherwise noted, triphenylphosphine and diethyl or diisopropyl azodicarboxylate were used in the reactions.

Some entries involve esterification of a structurally large alcohol with a comparably large acid to give a product that, even using a partial structure, is too large for the printed page. In such entries, the notation [RH] appears under the acid structure, and the product structure contains R in place of the acid. Likewise, when very large ethers are products, the notation [ROH] appears under the hydroxy compound, and the product contains RO in place of the hydroxy compound.

The literature has been reviewed from 1981 through June 1990. Examples of reactions prior to 1981 are found in the previous reviews of Castro 6a and Mitsunobu. (5)

The following abbreviations are used in the tables:

Ac acetyl Bn benzyl Boc tert-butoxycarbonyl Bz benzoyl C_5H_9 cyclopentyl C_6H_{11} cyclohexyl Cbz carbobenzyloxy CIAc chloroacetyl DEAD diethyl azodicarboxylate

- DIAD diisopropyl azodicarboxylate
- DMAD dimethyl azodicarboxylate
- DMF N,N-dimethylformamide
- DMtr 4,4¢-dimethoxytriphenylmethyl
- Ether diethyl ether
- HMPA hexamethylphosphoric triamide
- MEM methoxyethoxymethyl
- Mes mesityl
- MOM methoxymethyl
- MTD 4-methyl-1,2,4-triazoline-2,5-dione
- MTFPA 2-methoxy-2-(trifluoromethyl)phenylacetic acid
- Pht o-phthalyl, $o-C_6H_4(CO)_2$
- pNB *p*-nitrobenzyl
- rt room temperature
- SEM (2-trimethylsilylethoxy)methyl
- TES triethylsilyl
- THF tetrahydrofuran
- THP tetrahydropyranyl
- Ts *p*-toluenesulfonyl

Table I. Ester Formation from Secondary Alcohols, General

View PDF

Table II. Ester Formation from Primary Alcohols

View PDF

Table III. Ester Formation from Secondary Alcohols, β -Lactams

View PDF

Table IV. Ester Formation from Secondary Alcohols, Steroids

View PDF

Table V. Ester Formation from Secondary Alcohols, Carbohydrates

View PDF

Table VI. Ester Formation from Secondary Alcohols, Allylic

View PDF

Table VII. Lactone Formation

View PDF

Table VIII. Formation of Alkyl Aryl Ethers

View PDF

Table IX. Dialkyl Ether Formation, Epoxides

View PDF

Table X. Carbon–Oxygen Bond Formation, Four- to Six-Membered Cyclic Ethers

View PDF

Table XI. Enol Ether Formation

View PDF

 Table XII. Carbon–Oxygen Bond Formation with N-Hydroxyimides and

 Amides

View PDF

Table XIII. Carbon–Oxygen Bond Formation, Tosylates

View PDF

 Table XIV. Carbon–Oxygen Bond Formation, Formation of Imidates from

 Amides and Imides

View PDF

Table XV. Carbon-Nitrogen Bond Formation, Imides

View PDF

Table XVI. Carbon–Nitrogen Bond Formation, Azides

View PDF

Table XVII. Carbon–Nitrogen Bond Formation, β -Lactams

View PDF

Table XVIII. Carbon–Nitrogen Bond Formation, General

View PDF

Table XIX. Formation of Carbon–Sulfur Bonds

View PDF

Table XX. Carbon–Halogen Bond Formation

View PDF

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield	(s) (%)	R
C3	ОН	PhCO ₂ H	n	$\begin{array}{ccc} O_2 CPh & OH \\ \swarrow O_1 OH & \swarrow O_2 CPh \\ (79.7) & (12) \end{array}$	O ₂ CPh O ₂ CPh (8.3)	133
C4	$RCH_2 \xrightarrow{O}_{OH}$ R = BnO, <i>n</i> -C ₅ H ₁₁ , Ph,	PhCO ₂ H	$CH_2Cl_2, O^\circ, 2 h$	RCH ₂ O ₂ CPh	(—)	369
	-C≡C	(-)-(S)-MTFPA	THF, 4 h, rt	Ph F ₃ C OMe 70% ee	(—)	126
C5	$ \begin{array}{c} $	PhCO ₂ H	D .	R^2 R^3 OH R^1 I	()	60,
C ₆	HO			PhCO ₂ .		
	HQ Me	PhCO ₂ H	THF, 0°	PhCO ₂ Me	(87)	3
	\mathcal{N}	PhCO-H	C.H.			0
		PhCO ₂ H PhCO ₂ H	C_6H_6 C_6H_6	O ₂ CPh Me	(—) (—)	9 9
		PhCO₂H PhCO₂H	C ₆ H ₆ C ₆ H ₆	O_2CPh Me Cl O_2CPh Cl O_2CPh Me Cl O_2CPh Me Cl O_2CPh	() ()	9 9 9
	HO HO Me CI CI CI HO Me CI HO Me CI HO Me CI	PhCO2H PhCO2H ''	C ₆ H ₆ C ₆ H ₆ Toluene, 12 h, 22°	O_2CPh Me Cl O_2CPh Cl O_2CPh Me Cl O_2CPh Me Cl O_2CPh Me Me Cl O_2CPh Me M	() () (80)	9 9 9
	HO HO CI CI HO CI CI HO Me CI HO Me CI CI HO Me CI	РһСО₂Н РһСО₂Н 	C ₆ H ₆ C ₆ H ₆ Toluene, 12 h, 22° THF, rt, overnight	Cl O_2CPh Me Cl O_2CPh Me Cl O_2CPh Me O_2CPh $HC \equiv C$	() () (80) (46)	9 9 9 3 6
	HO HO CI CI CI CI HO Me CI CI HO Me CI OH $HC \equiv C$ OH CO_2EI O	РЬСО2H РЬСО2H 	C ₆ H ₆ C ₆ H ₆ Toluene, 12 h, 22° THF, rt, overnight	Cl Cl O_2CPh Me Cl Cl O_2CPh Me O_2CPh $HC \equiv C$ O O O_2CPh O_2CPh $HC \equiv C$ O	() () (80) (46) ()	9 9 3 6 3

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	-	Refs.
ОН			O ₂ CPh		
^r a	PhCO ₂ H	C ₆ H ₆	Ci Ci	(—)	90
HO			O ₂ CPh		
a a	. . .	C ₆ H ₆		(—)	90
н	РьСО₂Н	1) Ether, 20°, 14 h 2) KOH, McOH/H ₂ O			400
9 9			Y = S Y = O Q	(80) (78)	
	PhCO ₂ H	C ₆ H ₆ , 2 h, rt		(80)	316
	РьСО ₂ Н	CH ₂ Cl ₂	O ₂ CPh	(86)	401
Ке	PhCO ₂ H	THF, rt, 12 h	Me	(—)	402
$ \begin{array}{c} $	РьСО2Н	C ₆ H ₆		(78)	124c
Пон	PhCO ₂ H	C ₆ H ₆	PhCO ₂	(80)	124c
OH OH	PhCO ₂ H	THF, 14 h, 22°	0 ₂ CPh	(64)	88
O' Me (2R)-6-Heptyn-2-ol	АсОН	THF, 18 h, rt, DMAD	Me (2S)-Acetoxy-6-heptyne Me	(83)	65
MeO ₂ C OH OH	(+)-(<i>R</i>)-MTFPA	C ₆ H ₆ , rt, 120 h	MeO ₂ C MeO ₂ CF ₃ MeO ₂ CF ₃	(20)	128
O OH	4-O2NC6H4CO2H	Toluene, rt	O ₂ CC ₆ H ₄ NO ₂ -4	(90)	376
	PhCO ₂ H	THF, 0°, 5 h		(—)	403
CN Me	. .	-		()	404
OH S	3,5-(O ₂ N) ₂ C ₆ H ₃ CO ₂ H	THF, rt, 35 h	ArCO ₂ S	(51)	405
HO	4-O2NC6H4CO2H	-8° to rt, 1 h, toluene	4-O ₂ NC ₆ H ₄ CO ₂	(73)	34

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	Refs.
C _a OH Ph OH	PhCO ₂ H	п	O_2CPh O_2CPh Ph OH $+$ Ph O_2CPh (80.9) (16.0)	133
			+ $Ph \xrightarrow{OH} O_2CH$ (3.1)	'h
	PhCO ₂ H	ТН F , п, 15 b	$ \begin{array}{c} $	i) 406
	PhCO ₂ H	THF, -15° to rt, 2 h	I CO2Et OBz (58	i) 407
MeO ₂ C OH Me	3,5-(O ₂ N) ₂ C ₆ H ₃ CO ₂ H	THF, rt, overnight	MeO ₂ C O Me (95) 408
Me OH	PhCO ₂ H	THF	\bigvee_{0}^{Me} $O_2 CPh$ (70)) 409
HOTH		THF, rt, 14 h	PhCO ₂ H (83) 47
о. ОН	3,5-(O ₂ N) ₂ C ₆ H ₃ CO ₂ H	THF, rt, 15 h	0. 0. 0.2CAr (87	.7) 410
OCH2OCH3 OH	PhCO ₂ H	THF	$O_2CPh O_2CC_{H_4}NO_2-4$	40) 411
for	4-O2NC6H4CO2H	THF, 15 h, 20°	for (75) 412
С	3,5-(O ₂ N) ₂ C ₆ H ₃ CO ₂ H	THF, rt, overnight		87) 413, 414
) O O O O O H	4-O2NC6H4CO2H	THF, 18 h, rt	02CC6H4N02-4	55) 415
	AcOH	÷		56) 72, 73
	PhCO₂H	(1) HMPA, 7 h, 60° (2) NaOMe/MeOH		—) 384
	PhCO ₂ H	THF, rt, 12 h	H H O_{0} O_{2}	72) 402

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
HO CO ₂ Me	HOAc	Et ₂ O, rt, 4 h	AcO CO ₂ Me	(65)	416
CO ₂ Et OH	РЬСО2Н	THF		(72)	417
MeO ₂ C HO H Me	PhCO ₂ H	e e	MeO ₂ C Me HO ₂ CPh	(—)	418
Ме О Ме Ме	4-O2NC6H4CO2H	Toluene, 1 h, -35° to ambient	Me OO2CpNB Me	(71)	33
PhCH ₂ O	PhCO ₂ H	THF, 4 h, 20°	O ₂ CPh PhCH ₂ O	(98)	419, 42
		-	N CO ₂ CH ₂ CCl ₂	(—)	85
CH OH	4-O2NC6H4CO2H	C ₆ H ₆	O2CC6H4NO24	(80)	421
H OH	HOAc		H	(—)	422
OH OT	4-O2NC6H4CO2H	Toluene, 1 h, -30 to 0°	4-02NC6H4CO2 0-0	(90)	34, 35
OH CO2Et	HCO ₂ H	THF	O ₂ CH CO ₂ Et	(—)	423
ОН ОН	PhCO ₂ H	THF	H O ₂ CPh	(25)	129, 13
H H OH	n .	25°, 18 h			424
R			$R = CH_2OH$ $R = Me$	(80) (75)	425
HO OTHP OH S CO-Ft	PhCO ₂ H	1HF, rt, 15 h	PhCO2 OTHP OH 	(83)	425
Z	HCO ₂ H	1) THF, π, 2 h 2) HO ⁻	2	(40)	426
syn:anti 1:2 HO Bu-n	PhCO ₂ H	THF, 22°, 40 h	100% syn PhCO ₂ Me	(69)	427
The or One	Zn(O ₂ CR) ₂	Toluene	$O_2 CR \qquad R = Me$ $Pr - i \qquad R = Ph$	(80) (84)	251
UH	<i>n</i> -Bu ₄ N ⁺ ⁻ O ₂ CPh	THF	" $\mathbf{R} = \mathbf{P}\mathbf{h}$	(60)	428

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
ı			Ме		
Me	a a adviced		Ph-CO ₂ Me	ind.	Sec.
Ph CO ₂ Me	(+)- <i>R</i> -2-MTFPA	C_6H_6 , 65 h	F ₃ C.	(19)	127
о́н			Ph		
он	N 65 W		O ₂ CPh	(72)	100
OCH ₂ Ph	PhCO ₂ H	THF	OCH ₂ Ph	(73)	429
Maria	1.50	Serie Selection	ÖAc		
CH2 OH	AcOH	C_6H_6 , 12 h, rt	CHART	(47)	382
MOC OHH			M-O C OH _H		
CONH2	HOAC	THE	CONH2	(-)	430
	none	m		()	430
н он			H OAc		
X C≡CH			С=СН		
	HCO ₂ H	C ₆ H ₆ , rt, 48 h		(59)	431
HO			PhCO ₂		
PhCH ₂ O.	PhCO ₂ H	-	O ₂ CPh PhCH ₂ O	(83)	432
CO ₂ Me			CO ₂ Me		
~ Å	all a set as		O ₂ CPh		
(To)-Me	PhCO ₂ H	-	Me Me	()	433
H			H		
			100% retention		
\wedge			\wedge		
H	-	1) THF, rt	$ \rightarrow $	(52)	434
\sim		2) NaOH	$ \rightarrow $		
ОН			ÓH PhCO:		
CO2Me	PhCO ₂ H	THF, 20°, 12 h	CO2Me	(90)	435, 4
Ĥ Ĥ Me			H O H Me	1.01	1444
ОН	CI		çı		
SiMe ₃ Me	Phs CO-H	-	sph sph	()	68
но /			ŚiMe ₃ Me Ö		
LI +	PhCOaH		H O2CPh	(97)	427
			$\langle \uparrow I \times$	(02)	457
\sim			PhCO ₂		
			+		
			N. Y.	(11)	
OH			OH		
(CH ₂) ₇ CO ₂ Me	-	-	(CH ₂) ₇ CO ₂ Me	()	438
НО			PhCO.		
	BLCO II	THE - AL		(72)	
N	PhCO ₂ H	1 HP, rt, 2 h	(N)	(73)	97
CO2CH2C6H4NO2-4			CO2CH2C6H4NO2-4		
Ме			Me		
CO-CH-Ph	(+)-(<i>R</i>)-MTFPA	C ₆ H ₆ , rt, 137 h	MeO CF3 CO2CH2Ph	(33)	392
OH .		A. must set as	Ph		
			ő		

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
		-	÷	HO	(—)	439
	OH OCH ₂ Ph	3,5-(O ₂ N) ₂ C ₆ H ₃ CO ₂ H	THF, 20 h, rt	O ₂ CAr OCH ₂ Ph Me	(85)	440
	(CO) ₃ Fe	PhCO ₂ H	2	PhCO ₂ (CO) ₃ Fe	(—)	441
		PhCO ₂ H	THF	O ₂ CPh N CH ₂ Ph O ₂ CPh	(63)	442
	OH OCH ₂ Ph	3,5-(O ₂ N) ₂ C ₆ H ₆ H ₃ CO ₂ H	THF, rt, overnight	O ₂ CAr OCH ₂ Ph	(94)	443
	HO, H Me H OMe OMe	PhCO ₂ H	THF, rt, 16 h	$PhCO_2$ H CO_2Me Me H OMe	(76)	36
	OH S C C C C C C C C C C C C C	PhCO ₂ H	THF, rt, 1 h	O2CPh S	(86)	81
		PhCO ₂ H	Et ₂ O, rt, overnight	S O ₂ CPh	(37)	82
	n-C ₅ H ₁₁ F OH	3,5-(O ₂ N)C ₆ H ₃ CO ₂ H	1) THF, 24 h, 25° 2) KOH, MeOH		(72)	444
C ₁₃		PhCO ₂ H	THF, rt, 48 h	PhCO ₂ Me CO ₂ Me H O	(68)	445
		HO ₂ CCH ₂ P(O)(OEt) ₂	C ₆ H ₆		(80)	446
	PhCH ₂ O HOO OCH ₂ OMe	PhCO ₂ H	1) C ₆ H ₆ , rt, 24 h 2) NaOH, MeOH, H ₂ O	$R = CH_2P(O)(OEt)_2$ PhCH ₂ O HO OCH ₂ OMe	(70)	447
	OH OCO	PhCO ₂ H	Et ₂ O, rt, 48 h	O ₂ CPh C	(86)	448
	PhCH ₂ O OH	4-O2NC6H4CO2H	Toluene, rt, 45 min	4-O ₂ NC ₆ H ₄ CO ₂ PhCH ₂ O	(78)	376
	Cbz ^{-N} CO ₂ Et	PhCO ₂ H	THF, reflux, overnight	CO2Et	(52)	70

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	_	Refs.
но			PhCO ₂		
	PhCO ₂ H	THF, rt, 2 h		(86)	97
HO CO ₂ Et	AcOH	THF, 11, 20 h	AcQ CO ₂ Et	(91)	449
HO CO ₂ Me CO ₂ Me	AcOH	CH ₂ Cl ₂	AcOCN ACO_Me CO_Me	(85)	450
	HCO ₂ H	- 10° to rt, 3 h		(57)	98
MeO OH	PhCO ₂ H	THF, 2 h	MeO O2CPh	(70)	451
	PhCO ₂ H	C ₆ H ₆ , 14 h, rt		(90)	379
				(90)	379
OCH ₂ Ph	4-O2NC6H4CO2H	THF, 20°, 15 h	OCH ₂ Ph O ₂ CC ₆ H ₄ NO ₂ -4	(75)	406
	AcOH	-	AcQ CO2Et	()	125
HO	PhCO ₂ H	ТНF, 19 h, rt	Epimeric mixture PhCO ₂	(90)	40
THPO HO S	PhCO ₂ H	THF, 1 h, rt	THPO OCPh S	(82)	81
тнро но з		C.W.	THPO OCPh S	(26)	81
Me ₃ Si	.C ₅ H ₁₁ -n 4-O ₂ NC ₆ H ₄ CO ₂ H	THF, 0.5 h, 0°	Me ₃ Si C ₅ H ₁₁ -n	(81)	67
HO Me OBu-t	MeSCH ₂ CO ₂ H	C ₆ H ₆ , 2.5 h, rt	Me OBu-r	(73)	452

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
C15						
0~	ОН			0 CH		3.51
9.	-4	HCO ₂ H		6-4	(—)	46
	-SPh Me			SPh Me		
~	OCH ₂ Ph	PhCO ₂ H	1. <u></u>	OCH2Ph	(65)	453
6	ЭН			O ₂ CPh		
H	н			AcQ H		
				60		
	Y Yo		1) THF, reflux, 3 h	A A A		
носн	² ¹ ⁰ ^{CH₂OH}	PhCO ₂ H	2) NaOMe/MeOH	AcOCH ₂ ¹ O CH ₂ OAc	(73)	141
	HO		5) Ac ₂ O/pyriane	Aco		
	ОН			OAc		
9	ЭН			OAC		
		1.21	1.2		(-)	442
N	CO-Et			N COsEt	.,	
CH ₂	Ph +			CH ₂ Ph OH		
	·			Ť.		
7	-CO2Me	HOAc	-	CO ₂ Me	()	454
Ph	CO ₂ Me			Ph CO ₂ Me		
0 L	н			ы Д		
5	Loon	HOAc	-	Com	()	454
Ph	CO ₂ Me			Ph CO ₂ Me		
HO I Me				HCO ₂ Me		
N		HCO H	THE reflux 6 h	(1)	(85)	155
H	Me	neo2n	THE, ICHUX, O II	H Me	(05)	100
ме	0			Me of		
	Me			Me		
EtO2C	Me	PhCO ₂ H	Et ₂ O, rt, 2 h	EtO2C Me	(52) 3	373
	\boldsymbol{X}			¥_		
	OH			0 ₂ CPh		
	OH			O ₂ CH		
0		HCO ₂ H	THF, 3 days, rt	0	(50)	456
5	LN N			S-N		
				N N		
-			and an allowed and	PhCO ₂ Me	Me	
H	-Me	PhCO ₂ H	C_6H_6 , 60–65°, 3 h	+ O ₂ CPh	O CPL	383
ОН	O ₂ CPh			(14) (13))	
				A		
				[] Me		
				+		
				(7)		

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
	$OR OMe OMe CO_2H$	THF, rt. 7 h	$ \begin{array}{c} OMe \\ OR \\ OR \\ OR \\ OR \\ OR \\ OR \\ OMe \\ OMe \\ OB \\ O$	(57)	94, 95
	PhCO ₂ H	THF, rt, 2.5 h	K = MEM OMe OR OR OR OR OR OR OR OR	(93)	94, 95
OCH ₂ Ph	АсОН	C ₆ H ₆ /toluene, 16 h, rt	$R = PhCH_2$	(64)	39, 42
OH Me ₃ Si OCH ₂ CH ₂ OEt	4-O2NC6H4CO2H	1) THF 2) NaOH	Me ₃ Si	(67)	457
HO CO ₂ CHPh ₂	PhOCH ₂ CO ₂ H	THF, rt, overnight	Me PhOCH ₂ CO ₂ ···· CO ₂ CHPh ₂	(94)	458
HO CH(OMe) ₂	4-PhC₀H₄CO₂H	-	$4-PhC_6H_4CO_2$ $4-PhC_6H_4CO_2$ $CH(OMe)_2$	(40)	37
	AcOH	÷	AcQ H N O Cbz H O	()	71
	$ \begin{array}{c} & & \\ & & $	THF, rt, 2 h	RO H N OCH ₂ Ph	(50)	459
PhCH ₂ O PhCH ₂ O	[RH] PhCO₂H	THF, 0°	Me O ₂ CPh Me HO	(88)	460
	PhCO ₂ H	CH2Cl2, rt, 2 days	OMe OMe	(74)	368
HO Bu-n OCH ₂ Ph	PhCO ₂ H	THF, 22°, 40 h	PhCO ₂ Bu-n OCH ₂ Ph	(67)	427
CH ₂ OCH ₂ Ph OH	PhCO ₂ H	Et ₂ O, 23°, 5 h	CH ₂ OCH ₂ Ph O ₂ CPh	()	461

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs
	OAc OAc	THF, -13°, 1 h, 3°, 0.5 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	(80)	462
n-C ₈ H ₁₇ Me Me	PhCO ₂ H	THF, 5°, overnight	n-C ₈ H ₁₇ Me Me	(70)	463
n-C ₈ H ₁₇ Me Me	PhCO ₂ H	THF, 5°, overnight	n-C ₈ H ₁₇ Me Me Me	(—)	463
HO S S CO2EL	АсОН	THF, rt, 18 h	Aco.		59
он о о			X = CI X = I PhCO ₂ Q Q	(80) (85)	
	PhCO ₂ H	C ₆ H ₆ , rt, 3 days	i-Pr Me	(64)	377
HO Me OH N Me	PhCO ₂ H	_ (Me PhCO ₂ Me OH CO ₂ Bu-t	(57)	464
s H H OH AcO Me OAc	Zn(OAc) ₂	CH ₂ Cl ₂ /toluene (1:3), 90-100°, 23 h	AcO Me OAc	(41)	465
24-			+ Aco Me OAc	(11)	
HO- O-Me	АсОН	THF, 0°		(—)	466
r-BuMe ₂ SiO Me	PhCO ₂ H	THF, 5°	r-BuMe ₂ SiO Me	(—)	57, 5
CONHCH(Me)Ph-(S) $H \rightarrow O_2CPh$ $HO \rightarrow H$ CO_2Me	PhCO ₂ H	THF, reflux, 48 h	$CONHCH(Me)Ph-(S)$ $H \rightarrow O_2CPh$ $H \rightarrow O_2CPh$ CO_2Me	(55)	467
N H CO ₂ Me	PhCO ₂ H	-	$ \underbrace{ \begin{pmatrix} N \\ N \\ H \\ CO_2 Me \end{pmatrix}}^{H} \underbrace{ H}_{Me} O_2 CPh $	(—)	468
	PhCO ₂ H	C ₆ H ₆ , rt, 3 days		(37)	377

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
	OSiMe2Bu-r	АсОН	-	OSiMe ₂ Bu-t	(—)	56
C21	HQ N CO ₂ CH ₂ C ₆ H ₄ OMe-p	HCO₂H	THF, rt, 0.5 h	HCO ₂ N PNB	(82)	469
	HO THPO Br	PhCO ₂ H	-	PhCO ₂ THPO Br	(—)	470
	Me C=C OH	PhCO ₂ H	-		(90)	471
	BnO OH N CH ₂ OCH ₂ OMe	PhCO ₂ H	THF, rt, 14 h	BnO O ₂ CPh CH ₂ OCH ₂ OMe Bn	(72)	472
	HO C ₅ H ₁₁ -n	PhCO ₂ H	1) THF, 0°, 2 h 2) NaOMe, MeOH, 23°, 6 h	но	(91)	473
	H H H OH MeO ₂ C	HCO ₂ H	C ₆ H ₆ :DMF (19:1), 2 h, rt	N H Me H H C2CH MeO2C	(89)	92
C ₂₂	Me i-Pr O OH	PhCO ₂ H	THF	Me i-Pr O ₂ CPh	(75)	474
	Me COPh HO O-T Bno	4-O2NC6H4CO2H	Toluene, 0°	Me^{-1} COPh $4 \cdot O_2 NC_6 H_4 CO_2 O + O + O + O + O + O + O + O + O + O $	(—)	475, 476
		NHCHO CO ₂ H	THF, 2 h, rt	OHCNH n-C ₁₁ H ₂₃ OHCNH n-C ₁₁ H ₂₃	(80)	477
а.		NHCOCH ₃ H ₂ NOC CO ₂ H	а.,	$CH_{3}OCNH CONH_{2}$ $CO_{2} O C_{6}H_{13} \cdot n$ $CO_{11}H_{23} C_{6}H_{13} \cdot n$	(38)	477
C ₂₃	MeO OH NH	АсОН	THF, n	MeO MeO MeO	(63)	129, 13
	Ts OH C ₉ H ₁₉ -n	PhCO ₂ H	THF, 20°, 20 h	Ts -H O ₂ CPh	(81)	79

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

1	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
	BrHg $(CH_2)_6CO_2Me$ $C_5H_{11}-n$ HO OAc	АсОН	THF, -50°	BrHg $(CH_2)_6CO_2Me$ $C_5H_{11}-n$ AcO OAc	(70)	87
	HO S S CO ₂ R OSiMe ₂ Bu-t	-	-	HO. S S CO ₂ R OSiMe ₂ Bu-r	(—)	478
C ₂₄	OH C ₁₀ H ₂₁ - <i>n</i> OCH ₂ Ph	PhCO ₂ H		O ₂ CPh C ₁₀ H ₂₁ -n OCH ₂ Ph	(78)	479
C ₂₆	мео С ₂₂ Н ₄₅ - <i>n</i> ОН	PhCO ₂ H	THF, 1 h, 20°	$MeO \xrightarrow{O} C_{22}H_{45}-n$ O ₂ CPh	(92)	480
	HO $C_{2}H_{11}$ -n HO OTHP	PhCO₂H	THF, 45 min, 0°	PhCO ₂ PhCO ₂	(57)	78
	$HO \\ H \\ C \equiv CC_{13}H_{27} - n \\ N - CO_2Bu - t \\ O + $	PhCO ₂ H	-	PhCO ₂ H. $C \equiv CC_{13}H_{27} \cdot n$ N- $CO_2Bu \cdot t$	(70)	481
	OH	PhCO ₂ H	THF, rt, 15 min	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & + \end{array} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	(41) (41)	482
C ₂₇	Ph ₃ CO Me Me	4-O2NC6H4CO2H	THF, 22°, 120 h	Ph_3CO Me	(50)	88
	Ph ₃ CO		-i-	Ph ₃ CO Me Me	(45)	88
	H- S HO MEMO H H H MEMO Me	NaO ₂ CH	THF, rt, overnight	MEMO HCO2 MEMO HCO2 MEMO Me	(92)	483
	$MeO \longrightarrow CO_2Me$	PhCO ₂ H	THF, 3.5 h	$ \begin{array}{c} OMe \\ MeO \\ \hline \\ \hline \\ \hline \\ \\ H \\ \end{array} \begin{array}{c} OMe \\ O \\ $	(77)	484
	n-CaH17 OH	АсОН	THF, 24 h	OAc S	(60)	45

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

2	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	_	Refs.
	4-O ₂ NC ₆ H ₄ OH CH ₂ =CH(CH ₂) ₁₁ O ₂ CBu-t	PhCO ₂ H	Et ₂ O, rt, overnight	4-O ₂ NC ₆ H ₄ O ₂ CPh	(97)	99
	$\begin{array}{c} 4 \cdot O_2 N C_6 H_4 & OH \\ \vdots & & O_2 C B u \cdot t \\ C H_2 = C H (C H_2)_{11} & & O_2 C B u \cdot t \\ N_2 \end{array}$			4-O ₂ NC ₆ H ₄ O ₂ CPh	(93)	99
	Bno OH Bno	PhCO ₂ H	THF	BnO BnO	(54)	485
C ₂₈	$\bigcup_{C_{5}H_{11}-n}^{OH} \bigcup_{MeO_{2}C}^{O_{2}CPh}$	PhCO ₂ H	1:1 Toluene:pentane, 0°, 1.5 h	C_2CPh O_2CPh $C_3H_{11}-n$ MeO_2C	(75)	486
Cm	$ \begin{array}{c} OC_{18}H_{37}-n\\ OH\\ OH\\ O_2CPh \end{array} $	PhCO ₂ H	Et ₂ O, 2 h, 0°	$PhCO_2 - \begin{bmatrix} OC_{18}H_{37}-n \\ \\ O_2CPh \end{bmatrix}$	(95)	371
	OH (CH ₂) ₃ CO ₂ Me MeO ^{-re} O C ₃ H ₁₁ -n OTHP	НСО₂Н	THF, 0°, 2 h	Me0 st 0	(45)	487
C ₃₀	p-MeOC ₆ H ₄ CH ₂ O OH PhCH ₂ O OSiMe ₂ Bu- <i>i</i>	PhCO ₂ H	1) THF, rt, 20 h 2) K ₂ CO ₃ , MeOH, rt, 15 h	OH Y O OSiMe ₂ Bu-t	(47)	488
C ₃₁	CH2OSiMe2Bu-r					
	BnO OH OH	PhCO ₂ H	THF, n	O ₂ CPh OBn	(—)	489
	CH ₂ OCPh ₃ CH ₂ Ph	PhCO ₂ H	THF, -40 to -20°, 19 h	CH ₂ Ph	(57)	490
C ₃₃	SEMO OH (CH ₂) ₃ CO ₂ Me SEMO C ₅ H ₁₁ -n	РНСО₂Н	-	SEMO 02CPh (CH2)3CO2Me SEMO C3H11-n	(—)	491
C.4	Me HO HO HO Me OSiMe ₂ Bu-1	HCO2H	C6H6	$Me \rightarrow H \rightarrow $	(70)	53
C38	r-BuPh ₂ SiO H	PhCO ₂ H	C ₆ H ₆	r-BuPh₂SiO HH H=−H	(97)	492
	t-BuPh ₂ SiO ⁻			t-BuPh ₂ SiO O ₂ CPn		

TABLE I. ESTER FORMATION FROM SECONDARY ALCOHOLS, GENERAL (Continued)

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs
C41 1-B1	BnQ OH uMe ₂ SiO HN OCPh ₃ CO ₂ Bu- <i>t</i>	PhCO ₂ H	THF, rt, 14 h	r-BuMe ₂ SiO HN O ₂ CPh HN OCPh ₃ CO ₂ Bu-r	(60)	472
Ph ₃	CO O O O O O O O O O O O O O O O O O O	HCO ₂ H	ether		(84)	52
C47		HCO ₂ H	ether		(84)	52

А	lcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	Refs
C ₁		AO.		o ΩR	
MeOH		[]	THE 0º 12 b		74
EtOH			IHF, 0 , 12 ll	$R = Me \qquad (90)$	/4
2		Boc-NH CO ₂ H		$Boc-NH^{-}CO_2R R = Et \qquad (93)$	
HO	-	PhCO₂H	rt	$PhCO_2 \rightarrow + PhCO_2 \rightarrow $	133
HÒ				HÓ PhCO ¹ (70–90) (0–10)	
0	н	A	THF, rt, 17 h	(68)	493
/		CO ₂ H SO ₂ Pr- <i>i</i>		CO ₂ SO ₂ Pr- <i>i</i>	
Me				Ме	
Me C	H ₂ OH	RCO ₂ H	Ether, 0-10°, 2-12 h	$Me - CH_2O_2CR$	96
0-0				$R = n - C_{17} H_{35} $ (98) R = n O NC H (97)	
7				$\mathbf{R} = p \cdot \mathbf{O}_{2^{1}} \mathbf{N} \mathbf{C}_{6} \mathbf{H}_{4} \tag{97}$	
				SiMe_3 (19)	
HO	SiMe ₃	Ph CO ₂ H	-	Ph O SiMa (37)	69
				0	

TABLE II. ESTER FORMATION FROM PRIMARY ALCOHOLS

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs
C ₈				0 OTs		
	O Me O OH	CO ₂ H CO ₂ (CH ₂) ₂ SiMe ₃	-	O O ₂ C	(61)	100
	PhCH ₂ CH ₂ OH $(CH_2)_n$ OH SiMe ₃ n = 2-5	$n-Bu_4N^+ -O_2CPh$ Cl PhS CO_2H	THF —	$\begin{array}{c} Me_{3}Si(CH_{2})_{2}CO_{2} \\ PhCH_{2}CH_{2}O_{2}CPh () \\ \hline \\ \hline \\ \hline \\ SiMe_{3} \\ \hline \\ $		428 68
29	PhCH=CHCH2OH	Ph CO ₂ H	Ether, rt, 12 h	Ph CO ₂ CH ₂ CH=CHPh		86
C ₁₀	PhCH ₂ OH	PhCO₂H	-	PhCH ₂ OH	(—)	494
		4-O2NC6H4CO2H	DMF, rt, 24 h	$4-O_2NC_6H_4CO_2 \xrightarrow{O}_{HO} NH_{O}$	(80)	495
	OH D-H CH ₃ H CH-Ph	PhCO ₂ H	_	O_2CPh HD CH ₃ H CH ₂ Ph	(80)	496
	У Суран	PhCO ₂ H	THF, 35°, 12 h	У ОН	(57)	497
		0 '			(55)	497
	но	MeO ₂ CCH ₂ CO ₂ H	-	MeO ₂ CCH ₂ CO ₂		498
C ₁₅	r-Bu SCH ₂ OH	OH t-Bu CH ₂ CH ₂ CO ₂ H	THF, rt	t-Bu HO SCH ₂ O ₂ CCH ₂ CH ₂	1- <i>1</i> (77)	499

TABLE II. ESTER FORMATION FROM PRIMARY ALCOHOLS (Continued)

TABLE II. ESTER FORMATION FROM PRIMARY ALCOHOLS (Continued)

_	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
C ₈	HO H H CO ₂ Me	HCO ₂ H	THF	HCO ₂ H H CO ₂ Me	(—)	17
C ₁₀		**			(68)	18
6	HO H H C=CSiMe ₃	PhCO ₂ H	-	PhCO ₂ H H C≡CSiMe ₃	(—)	19
C ₁₂	HO H H SMe O CO ₂ Me 3:1 85:8R	PhCO ₂ H	THF, 1.5 h 20°	PhCO H H SMe CO_2Me 1:3 85:8R	(71)	20
				M SMe 3:2 E:Z CO ₂ Me	(15)	

TABLE III. ESTER FORMATION FROM SECONDARY ALCOHOLS, β-LACTAMS

TABLE III. ESTER FORMATION FROM SECONDARY ALCOHOLS, B-LACTAMS (Continued)

Alcohol Carboxylic Acid Conditions Product(s) and Yield(s) (%) Refs. C20 HCO2 HO Ph Ph THF, rt, HCO₂H (84) 30 1.5 h OMe OMe HCO₂ HH THF, rt, ,, (32-39) 31 SR 0.5 h CO₂pNB CO₂pNB H R = CH = CHNHAc $R = CH_2CH_2NHAc$ SR (37-54) CO₂pNB C25 t-BuMe2SiQ t-BuMe2SiQ O₂CPh OH H H H C≡CBu-n C≡CBu-n (--) 32 PhCO₂H OMe OMe C28 HCO₂ HO Me Me H н H H OCH₂Ph OCH₂Ph (91) 500 HCO₂H THF, rt, 2 h CH(OC₆H₄OMe-p)₂ Ó Ó CH(OC₆H₄OMe-p)₂

TABLE III. ESTER FORMATION FROM SECONDARY ALCOHOLS, B-LACTAMS (Continued)

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	Refs.
Me Me	PhCO₂H	_	PhCOs ()	501
	PhCO ₂ H	THF, 2 h, rt	$\frac{Me}{H}$ (83)	502
H H H H H H H H H H H H H H H H H H H	PhCO ₂ H	C ₆ H ₆ , 5 h, rt	PhCO ₂ H (33)	93
Me NHCHO	НСО₂Н	THF, 20°, 8 h	HCO ₂ HCO ₂ (85)	503
	Alcohol $Me \qquad Me \qquad$	AlcoholCarboxylic Acid	AlcoholCarboxylic AcidConditions $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ PhCO2H- $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ PhCO2HTHF, 2 h, rt $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ PhCO2HTHF, 2 h, rt $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ PhCO2HCeH6, 5 h, rt $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ PhCO2HCeH6, 5 h, rt $\downarrow \downarrow $	AlcoholCarboxylic AcidConditionsProduct(s) and Yield(s) (%)

TABLE IV. ESTER FORMATION FROM SECONDARY ALCOHOLS, STEROIDS

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	Refs.
C	HO BU-J	PhCO₂H	-	PhCO ₂ ····································	501
C ₂₁	HO' HO HO	НСО2Н	C₅H₅, 48 h, reflux	HCO ₂ HCO ₂ H	134
				$ \begin{array}{l} \mathbf{R} = \mathbf{H} \\ \mathbf{R} = \mathbf{OH} \end{array} \tag{55} $)
	Me Bu-i	-	-	HO ()	508
	HO HO HO HO	HCO3H	THF, rt	HCO ₂ ····································	509
	Me Bu-	PhCO ₂ H	-	PhCO ₂ ····································	501
	HO' H	PhCO ₂ H	-	PhCO ₂ ····································	501
C ₂₉	HO Me Me OH HO	PhCO₂H	1) THF, 23°, 3 h 2) NaOH, EtOH	Ме Ме (50) H0ОН (50)	510
	Me HO OMe	C≡CH MTFPA	-	$ \begin{array}{c} Me \\ -C \equiv CH \\ O \\ O \\ Ph \end{array} (-) $	391

TABLE IV. ESTER FORMATION FROM SECONDARY ALCOHOLS, STEROIDS (Continued)

Product(s) and Yield(s) (%) Alcohol Carboxylic Acid Conditions Refs. C₃₂ OH QH C≡CPr-i C≡CPr-i Me (75) 63 C34 ŌН O₂CPh C≡CPr-i C≡CPr-i THF, 10–15°, 0.5 h PhCO₂H (75) 511 OCH₂Ph

TABLE IV. ESTER FORMATION FROM SECONDARY ALCOHOLS, STEROIDS (Continued)
Alcohol		Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
	PhCO ₂ H		-	PhCO ₂ O	(—)	512
HO OH	PhCO ₂ H		THF, 1 h	HO PhCO ₂ OH	(20)	137
HO OOMe	PhCO ₂ H		THF, 0°-rt, 2 h	PhCO2	(96)	513, 514
HO	PhCO ₂ H		C_6H_6 , rt	MEZO OMe	(80)	123
Mfio	PhCO ₂ H		C_6H_6 , rt	Me OoMe O ₂ CPh	(80)	123
MA OMe	PhCO ₂ H		C_6H_6 , rt	PhCO ₂ (36) + PhCO ₂ (37) + PhCO ₂	e	123
	AcOH		C ₆ H ₆ , rt, 2 h	Me AcO OMe	(73)	515

TABLE V. ESTER FORMATION FROM SECONDARY ALCOHOLS, CARBOHYDRATES

Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
	PhCO ₂ H	THF, 1 h	CH ₂ OH OOMe	70)	137
	PhCO ₂ H	PH THF Pt	Me (89)	516
	PhCO ₂ H	C ₆ H ₆ , rt, 2 days Pt	Me (64)	381
HO OEt	PhCO ₂ H	THF, 23°, 0.5 h ^{Ph}	CH_2O_2CPh $CO_2 - O$ OEt (i)	85)	140
C_{ϕ} HO- OH N ₃ OH	PhCO ₂ H	Pt	$\begin{array}{c} & & & \\$	(8)	43
	<i>n</i> -Bu ₄ N ⁺ ⁻ O ₂ CPh	THF	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	60)	428
C ₁₂ HO HO CH ₂ OH	РhCO2H ОТНР	1) THF, 24 h, rt 2) K ₂ CO ₃ , MeOH	CH_2O_2CR	86)	517
HO HO HO HO HO	<i>n</i> -C ₅₉ H ₁₁₇ C ₂₂ H ₄₅ - <i>n</i>	HMPA:CH ₂ Cl ₂ H((1:1), rt, overnight H(OH HO HO OH (6	51)	138
сн₂он носна си ои	<i>n</i> -C ₁₅ H ₃₁ CO ₂ H	DMF, rt, 14 h "	CH ₂ O ₂ CR (5	59)	139
HO HO CH2OH	<i>n</i> -C ₁₅ H ₃₁ CO ₂ H	DMF, rt, 14 h	HO HO CH2OLCK (5	59)	139
C_{13} $Ph \rightarrow O + O + NO_2$ $Ph \rightarrow O + O + O + O + O + O + O + O + O + O$	HCO ₂ H	THF, 48 h, 5° Pt		56)	518
			+ $H_{\text{Ph}}^{\text{H}} O$ (2	27)	

TABLE V. ESTER FORMATION FROM SECONDARY ALCOHOLS, CARBOHYDRATES (Continued)

439

i.

TABLE V. ESTER FORMATION FROM SECONDARY ALCOHOLS, CARBOHYDRATES (Continued)

TABLE V. ESTER FORMATION FROM SECONDARY ALCOHOLS, CARBOHYDRATES (CONTINUED)

TABLE V. ESTER FORMATION FROM SECONDARY ALCOHOLS, CARBOHYDRATES (Continued)

		0	
		ů	
1		o SiMea	
Me ₃ Si CO ₂ H	THF, 0–25°, 1 h	R R	121, 122
		o o o	
		R = Et $R = n \cdot C_8 H_{17}$	(80) (99)
		Ļ	
PhCO ₂ H	THF, rt, 20 h		55
		R = Cl	(38)
		R = H $R = (CH_2)_6 CO_2 Et$	(66) (91)
		Å	
PhCO ₂ H	THF, rt, 20 h	PhCO	(82) 55
	THE O		
<i>n</i> -C ₁₇ H ₃₃ CO ₂ H	90 min	CN	(11) 91
		+	
		CN	(16)
		-2.5-C	
PhCO ₂ H	<u>ц</u>	COO2CPh	(92) 523
		Ó ₂ CPh	100 10
3,5-(O ₂ N) ₂ C ₆ H ₃ CO ₂ H	0°, 2.5 h	Aleco2	(91) 80
AcOH	THF, sieves,	Aco	(90) 105
~ ~		\sim	
CO ₂ H	THF, -5 to 0°, 3 h	°√~~	(70) 107
		0 CO ₂ Me	
AcOH	THF 36 h		(92) 108
		OAc	()
AcOH	TUE + 05b	AcO	() 110
Aton	1111 [,] 11, 0.5 ii		(-) 110
4-BrC ₆ H ₄ CO ₂ H	THF		(—) 525
		H H	
		н. /	
	ме ₃ Si	Me ₃ Si CO ₂ H THF, 0-25°. PhCO ₃ H THF, rt, 20 h PhCO ₃ H THF, rt, 20 h PhCO ₃ H THF, 0°, 90 min PhCO ₃ H THF, 0°, 90 min PhCO ₃ H 3,5-(O ₂ N) ₂ C ₆ H ₃ CO ₂ H 0°, 2.5 h AeOH THF, sieves, rt, 1 h \sim CO ₂ H THF, -5 to 0°, 3 h AeOH THF, 36 h AeOH THF, 36 h AeOH THF, rt, 0.5 h	$Me_{9}Si \sim O_{0} \subset O_{9}H \qquad THF, 0-2S^{\circ}, \qquad \qquad$

	Alcohol		Carboxylic Ac	id Conditio	ons	P	roduct(s) a	nd Yield(s) (%)	_	Refs.
но	CO ₂ Me	F	łOAc	THF, 20	h, rt	но		+ CO ₂ Me - OAc II O ₂ Me		524
						+	Aco	OAc		
	Entry 1 2 3 4	DIAD (equiv) 1.0 2.5 2.6 2.6	PPh ₃ (equiv) 1.4 2.5 2.6 2.6	HOAc (equiv) 2.8 4.0 21 100	I (%) 100 0 100	II (%) 0 20 12 0	III (%) 0 80 88 0	Yield (%) 70 58 		
c,		ОН Z	Zn(OAc) ₂	THF, rt				DAc •CH ₂	(12)	527
Me. HO	Me OF	H P	'nCO₂H	(—)		Me PhCO2		°OAc Ne O ₂ CPh	()	528
EtO ₂ C R	$= Ph_3C, t-B$	OR P OH uMe ₂ Si	'hCO₂H	THF, 15 rt	min,	EtO ₂ C		OR O ₂ CPh	(89)	103, 10
C ₁₀ HO	H H	P	°hCO₂H	THF, 1 H	ı, 25°	PhCO ₂			(—)	114
но	s s	P P	hCO₂H	-		PhCO		s	(—)	83
Ĺ	J _{OH}	Ρ	PhCO₂H	C₀H₀, 12	h, rt	L.			(28)	529
Г н	POH	A	AcOH	THF		H	Ac 70:30 at rt	AcoH	(90)	124Ь
НО	A	A	AcOH	THF, -4	40°	Aco	65% D (H) +	(H) D-OAc	6 D (90)	124b
						55 % 0 ~	85:	15		

TABLE VI. ESTER FORMATION FROM SECONDARY ALCOHOLS, ALLYLIC (Continued)

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	Refs.
	HOTH	PhCO₂H	THF, -40°	$H \rightarrow D_2 CPh$ $PhCO_2 \rightarrow H$	(90) 124b
	HOH	AcOH	THF, -40°	H-OAc 98.2	(90) 124b
	нон	АсОН	THF, -40°	H	(90) 124b
	C NH	PhCO₂H	THF, rt, 18 h	NH NH NO2CPh	(59) 530
C ₁₁	Me OH	PhCO ₂ H	1) THF, rt, 24 h 2) NaOMe, MeOH	Me O OH	(76) 531
	Me OH	PhCO ₂ H	1) THF, rt, 24 h 2) NaOMe, MeOH	+ Me O OH $4:1$ $Me O OH$ $+ O OH$ $+ Me O OH$	(65) 531
	OH OH OH	PhCO ₂ H	<u> </u>	7:3 OCH ₂ Ph OAc	(—) 532
	Me 02C	AcOH	THF, rt, 15 h	Me - 0 MeO2C	(83) 120

TABLE VI. ESTER FORMATION FROM SECONDARY ALCOHOLS, ALLYLIC (Continued)

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	Refs.
	HO CO ₂ Me	PhCO ₂ H	THF, 25°, 3 h	PhCO ₂ CO ₂ Me	(61) 113
C.	Ме	PhCO ₂ H		Me O ₂ CPh	(—) 116
	Ph OH	АсОН	÷	Ph Ph	(—) 115
	Рп с	PhCO₂H	Ether, 15 h, rt	Ph O ₂ CPh	(85) 533
	Me Me	AcOH	C_6H_6 , rt	Me	(82) 111
	OF OEt	PhCO₂H	THF, rt, 3.5 h	OEt O2CPh	(85) 534
		PhCO₂H	THF, rt, 1.5 h	PhCO ₂ H Me	(85) 535
			-	Me H H OH OAc	(—) 109
Cu	Me Me	АсОН	THF, -15 to 10°, 4 h	() Mo Mo	(30) 35
	Ме ме	PhCO₂H	THF, rt, 9 h	Me Me	(91) 117
	Ие (-Рг ОН	PhCO₂H	÷	i-Pr O2CPh	(89) 112
		HCO ₂ H	THF, rt, overnight	HCO2 OMe	(91–94) 536
	Мен	PhCO ₂ H	1) C ₆ H ₆ , rt, 1 h 2) K ₂ CO ₃ , MeOH	Мен	(73) 537

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
C ₁₄	$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{H} \\ \text{H} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{Me} \end{array}$	PhCO₂H	-	$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{H} \\ \text{C} = \text{C} = \text{C} \\ \text{H} \\ n - \text{C}_7\text{H}_{15} \\ \text{Me} \end{array}$	(90)	538
	R N OAc	PhCO ₂ H	THF, rt, overnight	$R = CO_{3}Et$ $CO_{2}CH_{3}CCI_{3}$ $CO_{2}CH_{3}CCI_{3}$	(55–70)	539
C ₁₅		AcOH le	THF		(44)	119
	Me Me 95:5 α:β	PhCO₂H	ТНF, п, 24 h	$Me = 0.00 \text{ CPh}$ $88:12 \beta:\alpha$	(—)	540
	HO Me Me	PhCO ₂ H	THF, 5 h, rt	PhCO ₂ Me	(66)	102
	MeO ₂ C	Ph PhCO₂H	THF, 3 h, rt	MeO ₂ C O Ph	(91)	38
C ₄	HO	PhCO ₂ H	THF, 17 h, rt	PhCO2	(98)	40
	PhS Me Me CH ₂	PhCO₂H	THF, 20°, 12 h	$O \rightarrow O_2 CPh$ $PhS_{Me} Me CH_2$	(91)	541
C.		PhCO2H CSiMe3	-	Me Me Me Me C≡CSiMe ₃	(65)	542
P	hCH ₂ O	H ^{OH} PhCO₂H	THF, rt, 20 min	D H	(95)	543

Alcoh	nol Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)		Refs.
но		C ₆ H ₆ , rt, 15 min	HCO ₂ ····································	(—)	106
	PhCO ₂ H OH OH	C_6H_6 , 3 h, rt	O ₂ CPh	(19)	378
<i>t</i> -BuMe ₂ Si	10 (CH ₂) ₆ R –		<i>t</i> -BuMe ₂ SiO (CH ₂) ₆ R	(01)	55
C			$R = CO_2Et$	(91)	
MOMO HO Me	HOSiMe ₃ PhCO ₂ H	C_6H_6 , 3 h, rt	PhCO ₃ Me	(62)	28
OF Ph Me	H OH PhCO ₂ H	-	O ₂ CPh H OF O O Me Ph Me	(73)	544
C ₂₀	QAc		QAc		
t-BuMe ₂ Si t-BuMe ₂ Si	HO PhCO ₂ H	THF, 3 h, rt	r-BuMe ₂ SiO r-BuMe ₂ SiO	(87)	545
но	$C \equiv C C_6 H_{11} - n PhCO_2 H$	THF, rt, overnight	$PhCO_{2} - C \equiv C C_{6}H_{11} - n$	(88)	546
с тнро	$C_3H_{11}-n$ OH	THF, rt, 5 min	C ₅ H ₁₁ -n THPO O ₂ CPh	(73)	547
но	H AcOH	THF, 53 h, 17°	AcO	(75)	548
MeO H	OMe H PhCO ₂ H	THF, 15 min	MeO H H O ₂ CPh	(93)	118

TABLE VI. ESTER FORMATION FROM SECONDARY ALCOHOLS, ALLYLIC (Continued)

456

457

	Alcohol	Carboxylic Acid	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₂	O Me II Me I			O Me Me	
	Me H SPh	PhCO ₂ H	THF, 1 h, 15°	Me H SPh	(—) 44
		PhCO₂H	THF, 20°, 3 h	CCPh (CH ₂) ₇ CO ₂ Me	(83) 549
	n-C ₁₃ H ₂₇ OAc	PhCO ₂ H	1) THF 2) KOH/EtOH	n-C ₁₃ H ₂₇ OAc	(61) 550
	Me H O OTHP HO AcO Me OH	i-PrCO ₂ H	rt, 3 h	i-PrCO ₂ AcO Me OH	(35) 77
C ₂₃	r-BuPh ₂ SiO OH	PhCO₂H	-	r-BuPh ₂ SiO O ₂ CPh	(—) 551
	t-BuPh₂SiO OH	PhCO₂H	÷	r-BuPh ₂ SiO O ₂ CPh	(—) 551
	Me HO OTHP HO ACO Me OAc	RCO₂H	rt, 3 h	$\begin{array}{c} Me \\ RCO_2 \\ AcO \\ R = HO(Me)_2CCH_2 \end{array} $	77 (21)
C ₂₅	THPO(CH ₂) ₈ C≡C OH	t PhCO ₂ H	-	$R = H$ $C \equiv CEt$ $THPO(CH_2)_8 C \equiv C$ $O_2 CPh$	() 552
	HO O O Me O Me O Me	PhCO₂H	_	HO Come OMe OMe	(—) 491
	Ph To Me HO Me OSiMe ₂ Bu-r	PhCO₂H	THF, rt, 5 min	Ph TO Me PhCO ₂ Me OSiMe ₂ Bu-t	(78) 553
	THPO H	PhCO ₂ H	THF	THPO H	(—) 76
	HÓ			O ₂ CPh	

TABLE VI. ESTER FORMATION FROM SECONDARY ALCOHOLS, ALLYLIC (Continued)

TABLE VI. ESTER FORMATION FROM SECONDARY ALCOHOLS, ALLYLIC (Continued)

TABLE VII. LACTONE FORMATION

TABLE VII. LACTONE FORMATION (Continued)

Alcohol	Phenol	Conditions	Product(s) and Yield(s) (%)	Refs.
МеОН	ОН	THF	OR	74
EtOH	TrNH O Ph	Tri	NH O Ph	
	OH .	Bri	R = Me $R = Et$ $CH-CH-O$	(70) (75)
BrCH ₂ CH ₂ OH		THF, rt, 20 h		(70) 577
	CO2Et		CO ₂ Et	
i-PrOH HC≡CCH₂OH		THF	NH Q Ph	74
	0		R = i - Pr $R = propargyl$	(66) (60)
но	СОМе	THF, 0°, 3 h	СОМе	(80) 578
	ОН		\sim	

TABLE VIII. FORMATION OF ALKYL ARYL ETHERS

TABLE VIII. FORMATION OF ALKYL ARYL ETHERS (Continued)

Alcohol	Phenol	Conditions	Product(s) and Yield(s) (%)	Refs.
ОН	OH HaCl	\rightarrow		(—)	579
R^1 C=CH R^2 OH		C₀H₀, rt	R^1 $C \equiv CH$ R^2 $C \equiv R^3$		4c
	R^1 R^2 R^3 Time	Yield (%)			
но	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85 70 55 45 52 51 50 52 51 55 55 55 45 45	N-N // N		
H H	OH Me	3	H O Me	(—)	580
C ₄ HC=C(CH ₂) ₂ OH C ₅	4-MeOC₅H₄OH	÷	HC≡C(CH₂)₂OC₀H₄OMe-4	(82)	581
но	2,4-(MeO) ₂ -3-MeC ₆ H ₂ OH 4-t-BuC ₆ H ₄ OH 2,4-(MeO) ₂ -3-Me-5-BrC ₆ HOH	THF, rt, 48 h	Ar0	(60–70)	582
HO CO ₂ Et	4-FC ₆ H_OH о	THF, 18 h, rt	Me H OCO2Et	(72)	162
он	MeO O OH	THF, 1 h, 0°–25°	Meo o or	(87)	393, 58
ОН	OH HgCl	-		(—)	579
HOM		Toluene, rt			584
	RR!trans/cistrAcHCl65/3555AcOAcCl100/030AcOAcOAcOAc65/3556AcOAcOAc65/3556	ans/cis roduct Yield (5/45 45 0/70 52 0/50 70	%)		

TABLE VIII. FORMATION OF ALKYL ARYL ETHERS (Continued)

Alcohol		Phe	nol			Conditions	Product(s)	and Yield(s) (%)		Refs.
HOC≡CH	4-RC₀H₄C	ЭН				-	4-RC ₆ H ₄ O C≡CH	+ C=CH		593
$\begin{array}{c} C_9 \\ HO_{1} \subset \equiv CH \\ \downarrow \\ R^2 \\ R^1 \end{array}$	$ \begin{array}{c} $	4				-	(38) $R^{3} \longrightarrow O_{m} C$ $R^{4} \longrightarrow D_{m}$	() = H, Me ≡CH ~R ²		594
	Ri	R ²	R ³	R ⁴	Vield	(%)	K.			
	H H H H H H H H H H H H MeO H MeO H MeO H MeO M H H	H H H M H C H M H H H H H M H C H M MeO M H N	le le le le le O ₂	H H H H H H H H H H H H H H	52 51 50 46 51 55 45 45 50 40					
Рh~~ОН		DH IgCl				-	HgCl OAr	Ph	(—)	579
	ArOH ArOH					THF, rt, overnight THF, rt, overnight	$Ar = 2 \cdot HOC_6H_4$ $= 4 \cdot F_3CC_6H_4$ $= 2 \cdot MeOC_6H_4$ OAr OAr		(70) (65) (62)	595
HOCOTHP	4-MeOC	нон				CH ₂ Cl ₂ , rt,	$Ar = 2 \cdot HOC_{6}H_{4}$ $= 4 \cdot F_{3}CC_{6}H_{4}$ $= 2 \cdot MeOC_{6}H_{4}$ $4 \cdot MeOC_{6}H_{4}O$	OTHP	(68) (—) (—) (99)	595 370
C≡CH OH	RC ₆ H ₄ OI	н				u.S n rt	C≡CH OC ₆ H ₄ R (35)	+ C=Ci	ł	593
Me NOC(CH ₂)50H		H NO ₂ O ₂ Me				CH2Cl2, rt, overnight	$R = H$ Me N_{O} $(CH_{2})_{5}O$ Cl Cl Cl	H, 4-Me NO ₂ D_2 Me	(78)	596

TABLE VIII. FORMATION OF ALKYL ARYL ETHERS (Continued)

÷.

OMe

TABLE VIII. FORMATION OF ALKYL ARYL ETHERS (Continued)

TABLE VIII. FORMATION OF ALKYL ARYL ETHERS (Continued)

TABLE VIII. FORMATION OF ALKYL ARYL ETHERS (Continued)

	Alcohol	Conditions	Product(s) and Yield	(s) (%)	Refs.
C ₃ HO HO OR	HO	C ₆ H ₆ , reflux	OR		447, 621
	ОН	C ₆ H ₆ , 25°	$R = CH_2CH=CH_2$ $R = CH_2Ph$ $R = n-C_{16}H_{33}$ Me	(59) (72) (72) (—)	181
C ₆	Me. O OMe HO OH	THF, 0°	Me O OMe	(87)	622
C ₇	HOCH ₂ O HO HO HO	DMF, 2 h, rt	HOCH ₂ O CH ₂ OH	(65)	374
	но	Dioxane, 70°, 10 min		(100)	178
	Сон	C ₆ H ₆ , 125–130°, 1.5 h	X°Z Do	(—)	402

TABLE IX. DIALKYL ETHER FORMATION, EPOXIDES

	Alcohol	Conditions	Product(s) and Yield	(s) (%)	Refs
		Conuntons	rioduci(s) and rield		10013.
OH Ph OH	I	C ₆ H ₆ , 25°	Phr	(68)	181
но но он	<	C ₆ H ₆ , reflux, 2.5 h 3-Å sieves	OT O	(85)	83, 62
AcNH OH	Ме	CHCl ₃ , 18 h, rt		(99)	175
но но	`ОСН ₂ Рh	C_6H_6 , reflux, 20 h	A CHLOCH-Ph	(61)	624
но	°OCH ₂ Ph	C_6H_6 , reflux, 20 h	CH ₂ OCH ₂ Ph	(76)	624
HOCH ₂ OH		-	HOCH ₂ O N N N N N N N N N N N N N	(—)	625
HO HO	3n	C ₆ H ₆ , rt	O. OBn F	(78)	626
BnO	н	110°, neat	BnO	(88)	627
HO HO HO	-ОН	HO HO DMF, rt, 16 h HO—	HO OH HO	(24) H ₂	176, 6
		DMF, AcOH, 16 h, rt		(42)	176, 6

	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄	CH ₂ I OH HO OMe	Toluene, 2 h, 90°		(56)	179
C ₁₅	PhOMe	THF, reflux, 30 min	PhOOOMe	(70)	177
	РһООМе	DMF, 7 days, 80°	PhOOMe	(81)	177
C ₁₈	HO OCH ₂ Ph HO OCH ₂ Ph HO	C ₆ H ₆ , 125–130°, 1.5 h	OCH ₂ Ph OCH ₂ Ph	(83)	402
		C ₆ H ₆ , reflux, 1.5 h		(60)	176, 62
22	AcO AcO AcO AcO AcO AcO AcO AcO AcO AcO	DMF, 60°	AcO OAc AcO AcO AcO AcO OAc OAc	(54)	629
224	r-BuMe ₂ SiO HO HO HO HO OH	-	r-BuMe ₂ SiO HO HO HO HO HO HO HO HO HO OH	(—)	176

Conditions Alcohol Product(s) and Yield(s) (%) Refs. OSiMe2Bu-t C₆H₆, 85°, 4 days, 3-Å sieves HQ (70) 630 C.17 BzO BzO H HO CHCl₃, 3 h R7 (80) 176, 628 R2 BzO BzO H OBz -OBz он

TABLE IX. DIALKYL ETHER FORMATION, EPOXIDES (Continued)

	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
C,	он он	C ₆ H ₆ , 25°	Me. H 86% retention	181
C,	ноСн2он	CH ₂ Cl ₂ or CHCl ₃ , rt		631
C,	HOCH ₂ OH OMe	CH ₂ Cl ₂ or CHCl ₃ , rt	$MeO \rightarrow O + MeO \rightarrow O (8)$	81) 631
C10			574.	
	HO	THF, 10 h, rt	\int_{0}^{3Pn} (74)	632
	Pt OH OH	THF, -35°	P t O (71)	633
C _{ii}	OBn OH OH	(MeO) ₃ P, CH ₂ Cl ₂ , rt, 5 min	OBn	634
	OH EtO ₂ C O ₂ C	THF, 1 h, rt	$ \begin{array}{c} $	635

TABLE X. CARBON-OXYGEN BOND FORMATION, FOUR- TO SIX-MEMBERED CYCLIC ETHERS

	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₂	CH ₂ CH ₂ OH NOH EtO ₂ C CO ₂ Et	THF, rt, 1 h		(65)	635
Сц. К.	S H Bu-n	(MeO) ₃ P, THF, 25°, 2 h	S = Me	(32)	180
H F M	HO HO Ne OH	-	Me N O OH	(—)	636
н	о- К он	C₀H₀, 48 h, rt	R = H R = Mc	(53) (48)	637
E.	H H	C₀H₀, 1 h	OH OH	(80)	638, 639
Н	HO HO O_N Me O_{OCH_2Ph}	2	o O O CH ₂ Ph	(—)	640
С ₁₉ НС	HO	THF, HCO ₂ H, 17 h, rt	j.j.j.	(70)	641
C ₂₁ Br HO		D₂Me (MeO)₃P, CH₂Cl₂, 0.5 h	Br	(20)	180
Br	OH O O O O O O O	(MeO) ₃ P, CH ₂ Cl ₂ , 0.5 h	Br	(21)	180

TABLE X. CARBON-OXYGEN BOND FORMATION, FOUR- TO SIX-MEMBERED CYCLIC ETHERS (Continued)

	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs
C ₁₁	AHO HO			
		C₀H₀, rt, 17 h	$ \frac{R}{H} \qquad \frac{Yield (\%)}{(73)} $ Et (88) <i>n</i> -Pr (62) Pb (80)	171
C ₂₀	Pho H OH OH OH OH OH OH OH	ТНF, π, 0.5 h	Pn (80) 4-CIC ₆ H ₄ (60) 4-MeOC ₆ H ₄ (77) PhO H (57) CO ₂ Bu-t (57)	169
C ₂	PhO N H H H S O N H OH CO ₂ pNB	THF or CH ₂ Cl ₂ , rt, 20 min, DMAD; ROH, R = CH ₃ to n -C ₈ H ₁₇	PhO H H H S O N $(60-90)$ CO ₂ pNB	170
C29	Ph ₃ CNH OH	THF, rt, 15 min	+ PhO H H H H + $PhO H$ N H H H O N R CO_2pNB Ph ₃ CNH R	(10) 394
			$ \begin{array}{c} $	

TABLE XI. ENOL ETHER FORMATION

500
	Alcohol	N-Hydroxy Compound	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂	CH ₃ CO ₂ H	O N	THF, rt, 24 h	0 N (82)	183
C₄	л-С₄Н₀ОН	OH N-OH			183
			13 .	$\bigcup_{N} OC_4 H_9 - n $ (82)	183
		O N ⁻ OH	"	$\bigcup_{N=N}^{O} \sum_{N=N}^{O} C_4 H_9 - n $ (73)	183
C₃	ζ ₀ ⊥ _{CH₂OH}	N-Hydroxyphthalimide	THF, rt, 1 h	(-)	642
C,	4-ClC₀H₄CO₂H	О ПОН	THF, rt, 24 h	0 N-0 ₂ CC ₆ H ₄ Cl-4 (71)	183
		OH NOH		0 N-O ₂ CC ₆ H ₄ Cl-4 (50)	183
		N OH		0 0 0 0 0 0 0 0 0 0 0 0 0 0	183
	PhCH₂OH	O N OH	THF, rt, 24 h	OCH ₂ Ph (94)	183
		О Л-ОН		N-OCH ₂ Ph (94)	183
		N-OH	n	$\bigcup_{N=1}^{O} N^{-OCH_2Ph} $ (63)	183
		OH N ² N-OH		O N ^o CH ₂ Ph (83)	183
		о N-ОН	"	N ^{OCH₂Ph (80)}	183

TABLE XII. CARBON-OXYGEN BOND FORMATION WITH N-HYDROXYIMIDES AND AMIDES

Alcohol	N-Hydroxy Compound	Conditions	Product(s) and Yield(s) (%)	Refs
сн₂он ↓			CH ₂ O-N	
	Pht-NOH	THF, rt, 1 h	0 (15-65) 642
G = H, 4-F, 4-OH, 2-OH, 3-OH, C ₈	4-NHCOMe		G	
HO Ph Br	Pht-NOH	THF, rt, 18 h	Pht-NO Ph + Pht-NO Br (25) (27)	185
HO Br	Pht-NOH	THF, rt, 18 h	Ph Pht-NO Br (69) 185
t-BuMe ₂ SiO(CH ₂) ₃ OH	NPht N N N N N N N	THF	$NPht$ $N + N$ $N + N$ $N + N$ $O(CH_{a}) + OSiMe_{a}Bu_{a}t$ (70)) 643
	HO N N N N N N N N N N N N N N N N N N N	THF	OMe N	9) 643
Boc-NH ON	Pht-NOH	Be THF, rt, 0.5 h	oc-NH ONPht (81)	644
Me HO(CH ₂) _n N O Ad	Pht-NOH	-	Me htN-O(CH ₂) _n , N O Ad ()	645
n = 2, 3	0	1-BuMe	s ^{io} ⊐.o. 9	
	HN O N OH	THF, rt, 24 h	$ \begin{array}{c} $	646
Me			Me O O-NPht	

TABLE XII.	CARBON-OXYGEN E	BOND FORMATION WITH	N-HYDROXYIMIDES AND	AMIDES ((Continued)
------------	-----------------	---------------------	----------------------------	----------	-------------

	Alcohol	N-Hydroxy Compound	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₆	PhCH ₂ O PhCH ₂ O OCH ₂ Ph	O HN O N OH	THF, rt, 24 h	PhCH ₂ O O NH O NH O (32) PhCH ₂ O O O O N Ph O O O O O Ph O	646
	BnO OBn	HN O N OH	THF, rt, 24 h	$\alpha:\beta = 1:40$ 0 NH $BnO OBn$ $\alpha:\beta = 1:9$ (34)	646
		C N N N OH	THF, rt, 24 h	$BnO ORn \alpha:\beta = 1:40 (76)$	646
C ₂₇	Ph ₃ CO O O O O	HN O O HN O H	THF, rt, 24 h	$\begin{array}{c} Ph_{3}CO \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	646
				$\alpha:\beta = 9:1$ $Ph_3CO \longrightarrow O \longrightarrow O \longrightarrow N$ $\alpha:\beta = 3:1$ (78)	646
		N N OH		$Ph_{3}CO \longrightarrow O \longrightarrow N^{N_{S}}N$ $\alpha: \beta = 9:1$ (82)	646
	Cholestan-3β-ol	O N N	"	0 (79)	183
				1770	

TABLE XII. CARBON-OXYGEN BOND FORMATION WITH N-HYDROXYIMIDES AND AMIDES (Continued)

Alcohol	N-Hydroxy Compound	Conditions	Product(s) and Yield(s) (%)	Refs
	O N ² N	"		183
C_{30} HO HO Ph_3CNH O Ph O Ph	Pht-NOH	THF, rt, 1.5 h	Ph ₃ CNH O Pht-NO Pht-NO Ph (65)	648
Ph ₃ NHCH-N-CH-CCH ₂ NH PhCH ₂ H	2 Pht-NOH	-	$\begin{array}{c} O \\ Ph_3NHCH-N-CH-CCH_2NH_2 \\ PhCH_2 H \\ PhCH_2 H \\ Pht-NO \end{array} $ (40)	649

TABLE XII. CARBON-OXYGEN BOND FORMATION WITH N-HYDROXYIMIDES AND AMIDES (Continued)

	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄	2-Butanol	TsOLi or (TsO) ₂ Zn, C ₆ H ₆ , rt, 24 h	CH ₃ CH(OTs)CH ₂ CH ₃ (82)	182
C,	C₅H₀OH		C5H9OTs (48-86)	182
C ₆	C ₆ H ₁₁ OH	**	C₀H₁1OTs (15-80)	182
		(TsO)₂Zn	TsO OEt ()	140
C10	4-Octanol	TsOLi or (TsO) ₂ Zn, C ₆ H ₆ , rt, 24 h	OTs (78-84)	182
	HO. Me	LiOTs or (TsO)2Zn, C6H6, rt, 48 h	Me TsO (67-94)	182
	OH	"	Me OTs (68–90)	182

TABLE XIII. CARBON-OXYGEN BOND FORMATION, TOSYLATES

TABLE XIII. CARBON-OXYGEN BOND FORMATION, TOSYLATES (Continued)

-	Amide/Imide	Alcohol		Conditio	ons		Produc	t(s) and	d Yield	d(s) (%)	Re
C ₃	$\mathbb{R}^{4} \xrightarrow[OH]{} \mathbb{R}^{2} \xrightarrow[H]{} \mathbb{R}^{3} \xrightarrow[H]{} \mathbb{R}^{1}$	_	THF, rt,	4 h	R ¹ Ph	R	$ \begin{array}{c} $	R ³ R ³ H	R4 Ph	Yield (%) 63	196
					CF CC CF CC Ph 4-C 4-C 4-C	3 13 3 13 02NC6H4 02NC6H4 02NC6H4 02NC6H4	H H Me H H H H H	H H Me H H H H H	Ph Ph H H H Et H Ph	31 26 67 56 68 68 63 60 58	
C ₁₀	R^4NH N N N R^3 R^{10} Q	4-O2NC6H4CH2CH2OH	Dioxane	, rt, 24 h		R ⁴	N ^N NH R ¹ O-		NB 		
	$R^{1}O$ R^{2}			R ¹	R ²	R ³	R ⁴	Yie	eld (%)) Ref.	
C ₁₃				i-PrCO PhCO MeCO MeCO i-PrCO TMS	H O ₂ CPr- <i>i</i> O ₂ CPh OAc H H H	H H Br H H H	i-PrCO PhCO MeCO H H i-PrCO	83 72 84 		188 187 187, 188 189 650 651 194	
	Ph H N OH	-	÷			P	r V	H O CH2P	N OAc	(11)	65
C ₁₄	Q L N						+ 0	CH2PN	DAc IB	(55))
		pNBCH₂OH	Dioxan	e, rt, 10 m	in	Н	AcO-		>	(68) 65
	(PhCO)₂NH	ОН	rt			(, Ph	(—) 19

TABLE XIV. CARBON-OXYGEN BOND FORMATION, FORMATION OF IMIDATES FROM AMIDES AND IMIDES

	Amide/Imide	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
6	(PhCO)₂NH	HO Me OMe	THF, rt, 2 h	$\begin{array}{c} \begin{array}{c} Me \\ Ph \\ O \end{array} \\ \begin{array}{c} O \end{array} \\ O \end{array} \\ \begin{array}{c} O \end{array} \\ \end{array} \\ \begin{array}{c} O \end{array} \\ \begin{array}{c} O \end{array} \\ \end{array} \\ \begin{array}{c} O \end{array} \\ \begin{array}{c} O \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \end{array} \\ \end{array}$	195
C ₁₅	<i>t-BuMe</i> ₂ SiO OH	-	5:1 Toluene:THF, 30 min, 80°	R = H $R = Me$	654
C ₁₆		-	C ₆ H ₆ , 3-Å sieves, rt, 30 min		655
	HN + N + N + N + N + N + N + N + N + N +	HOCH2CH2SPh	Dioxane	$\begin{array}{c} OCH_2CH_2SPh \\ N \\ H_2N \\ N \\$	656
	HN N N AcO H AcO OAc	pNBCH₂OH	Dioxane, rt	pNBCH ₂ O N N N N N N N N	657
				$+ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	

TABLE XIV. CARBON-OXYGEN BOND FORMATION, FORMATION OF IMIDATES FROM AMIDES AND IMIDES (Continued)

Amide/Imide	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
	D₂Et —	Dioxane, rt, 3 h	O N O O O O O O O O	193
	∫ ^{Me}	DMF, 1 h		658
он			$ \frac{R}{P_{1}} = \frac{Y_{1}}{V_{1}} + \frac{Y_{1}}{V_{2}} + \frac{Y_{1}}{V_{2$	
C _{is} HN AcNH N AcO AcO OAc	EtOH	Dioxane, rt	AcNH N N N (82)) 186
C ₁₉ HN <i>i</i> -PrCONH Me ₃ Sio Me ₃ Sio	4-O₂NC₀H₄S(CH₂)₂OH	Dioxane, rt, 1 h	$4-O_2NC_6H_4S(CH_2)_2O$ N $i-PrCONH$ N Me_3SiO Me_3SiO Me_3SiO Me_3SiO Me_3SiO) 659
C ₂₂ OCH ₂ pNB N N N N N N N N N AcO	pNBCH₂OH	-	PNBCH ₂ O AcO OCH ₂ PNB N N N N N N N N N N N N N N N N N N) 660

Amide/Imide	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
HN N i-PrCON N N i-PrCO ₂	3,4-(MeO)2C6H4(CH2)2OH	THF, rt, 20 h	$i-PrCO_{2} \xrightarrow{OCH_{2}CH_{2}OAr} (78)$	661
i-PrCONH N N i-PrCO ₂ O i-PrCO ₂ R	R'OH	Dioxane, 2 h, rt	i-PrCO ₂ i-PrCO ₂ i-PrCO ₂ R	662
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
C_{31} HN N RCO_2 C_2 O_2CR CO_2CR	pNBCH₂OH	Dioxane, rt, 10 min	$ \begin{array}{c} OCH_{2}PNB \\ N \\ N \\ RCO_2 \\ RCO_2 \\ O_2CR \end{array} $ (55)	653, 660
K = Me, Ph			+ $RCO_2 O_2CR$ (24)	
	pNBCH₂OH	Dioxane, 3 d, 40°	pNBCH ₂ O N O N F O N F O N (30)	663

TABLE XIV. CARBON-OXYGEN BOND FORMATION, FORMATION OF IMIDATES FROM AMIDES AND IMIDES (Continued)

ŝ

TABLE XIV. CARBON-OXYGEN BOND FORMATION, FORMATION OF IMIDATES FROM AMIDES AND IMIDES (Continued)

ИеОН	$\int \int$		\sim	
ЛеОН			ſŢ	
	O ^N NO H	THF, rt		666
EtOH	(t-BuO2C)2NH Q	CH ₂ CN, rt, 20 h	Me (t-BuO ₂ C) ₂ NEt (86) Q	667
	HN O N CO ₂ CH ₂ Ph	Dioxane, reflux, 4 h	$ \begin{array}{c} \text{EtN} \\ \text{O} \\ \text{N} \\ \text{H} \\ \text{CO}_2 CH_2 Ph \end{array} $ (59)	668
	Ŷ		Ŷ	
РгОН	ON CO ₂ CH ₂ Ph	Dioxane, reflux, 4 h	$ \begin{array}{c} i-\Pr N \\ O \\ H \\ H \end{array} $ (61)	668
OH	Phthalimide	THF, rt, 17 h	N-Pht (68)	669
RC≡CCH₂CH₂OH	Succinimide	_	$\bigvee_{N-CH_2CH_2C=CR}^{O} (84-91)$	670
			$ \bigvee_{O} R = H, Me, Me_{3}Si, t-Bu, C(Me)_{2}OMe, i-Pr, n-Pr $	
	Phthalimide	THF	PhtN-CH ₂ CH ₂ C=CR	671
HC≡C(CH₂) _a OH	O N H	THF, rt, overnight		672
			n X Y Yield ((%)
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
HC≡C(CH₂)₂OH		THF, rt, overnight	$ \begin{array}{c} $	673
RC≡C(CH₂)"OH	S NH	-	$\int_{S}^{O} \int_{V-(CH_2)_n C \equiv CR}^{O}$	674
	0		O n R Yield (%)	
F	PrOH ~OH C=CCH₂CH₂OH HC=C(CH₃)₅OH HC=C(CH₃)₅OH	PrOH $\int_{H} \int_{H} \int_{CO_2CH_2Ph} \int_{V} \int$	$H_{H} + Co_{2}CH_{2}P_{H}$ Dioxane, reflux, 4 h $H_{H} + \int_{V} Co_{2}CH_{2}P_{H}$ THF, rt, 17 h C=CCH_{2}CH_{2}OH H= H_{H} + \int_{V} Co_{2}CH_{2}P_{H} THF $H_{H} + \int_{V} Co_{2}CH_{2}P_{H}$ THF $H_{H} + \int_{V} Co_{2}CH_$	$H_{H}^{m} = CO_{2}CH_{2}Ph$ Dioxane, reflux, 4 h $H_{H}^{m} = CO_{2}CH_{2}Ph$ (9) PrOH $H_{H}^{m} = CO_{2}CH_{2}Ph$ Dioxane, reflux, 4 h $H_{H}^{m} = CO_{2}CH_{2}Ph$ (61) $C = CCH_{1}CH_{2}OH$ Phthalimide THF, rt, 17 h $C = C(H_{2}CH_{2}C = CR$ (84-91) R = H. Me, Me,Si, r-Bu, C(Me),OMe, i-Pr, n-Pr (68) $C = C(CH_{2}),OH$ Phthalimide THF Phthalimide THF Phthalimide THF Phthalimide THF Phthalimide $H = Phthalimide THF THF, rt, overnight THF, rt, overnig$

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)		Refs.
HOCH ₂ CH=C=CH ₂	Succinimide	THF, 0°-rt, 2.4 h	N-CH ₂ CH=C=CH ₂	(99)	675
CH2=C=CHCH2OH	AcO.	THF, 1 h, rt	AcO.	(87)	676
он	5,5-Dimethylhydantoin	THF, rt, 2 days		(64)	677
ОН	K NH	-	the second	(58)	678
	MeO ₂ C	-	MeO ₂ C	(43)	672
		THF, rt, overnight		(43)	673
<i>С</i> ОН		THF, rt, overnight		(100)	673
				(89)	673
	I ANH	33	Al n	(91)	673
R ¹ R ¹ R ³ OH	Succinimide	THF, 3 h, rt	$ \bigvee_{R^2}^{0} \overset{R^3}{\underset{R^2}{\overset{R^3}{\overset{R^{3}}{\overset{R^{3}}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^3}{\overset{R^{3}}{\overset{R^{3}}{\overset{R^{3}}{\overset{R^{3}}{\overset{R}}{\overset{R^{3}}{\overset{R}}{\overset{R^{3}}{\overset{R^{3}}{\overset{R}}{\overset{R^{3}}{\overset{R}}{\overset{R}}{\overset{R^{3}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}}}{\overset{R}}}{\overset{R}}}}}}}}$	(85–96)	675
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R ³ H H H H Me		

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)	Refs.	
HOR	Phthalimide	THF, 15 h, rt		690	
			R Yield (%) Me 63 Et 71 Allyl 43 n-Pr 76 Vinyl 41		
ОН	5,5-Dimethylhydantoin	THF, rt, 2 days		(81) 677	
ОН	"			(64) 677	
ОН	H O H O H O	THF, rt, overnight		(90) 673	
	H NH	THF, rt, overnight		(70) 673	
	NH	THF, rt, overnight		(30) 673	
ОН	Succinimide	-	$\sqrt[n]{}$	(—) 691	
ОН		-	Me N Ne S N	(71) 682	
<u> </u>	Me Ph S NH	-	Ph S N	(47) 674	
MeOCH ₂ O	Phthalimide	0° to rt	Pht-N	(—) 692	
OH MeOCH ₂ O	Phthalimide	0° to rt	Pht-N-CH2OMe	(—) 692	

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)	Refs.
HOCH ₂ CO ₂ Bu-n		THF		26) 693
		THF	$(-) 4^{11}$	693
	Me NH H	THF	Me NH CH ₂ CO ₂ Bu-n	—) 693
HOCH ₂ CO ₂ Bu-n	CICH ₂ NH NH NH NH NH	THF	CICH ₂ NH CICH ₂ NH O CH ₂ CO ₂ Bu-n	693
			+ $CICH_2 \longrightarrow O$ N $-CH_2CO_2Bu-n$ N OCH_2CO_2Bu-n	
			+ $(CICH_2CO_2Bu-n)$ CICH ₂ N OCH ₂ CO ₂ Bu-n	-n
			+ $(\operatorname{CICH}_2 \operatorname{CO}_2 \operatorname{Bu-} n)$ CICH ₂ N O CH ₂ CO ₂ Bu-n)
HO SiMe ₃	Phthalimide	-	Pht-N-SiMe ₃	—) 694
⟨ _S ⟩ _{(CH₂)₃OH}	S NH	THF, 14 h, rt	$S = \left\{ \begin{array}{c} 0 \\ N = (CH_2)_3 \\ 0 \end{array} \right\}$	62) 695,69
CH ₂) _n OH	(CH2)m NH	THF, overnight	$(CH_2)_m N - (CH_2)_n S$	697, 69
			n m Yield (%) 2 2 51 2 3 62 3 2 37	

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)		Refs
PhCH ₂ OH	PhCH ₂ O ₂ C <i>t</i> -BuO ₂ C	CH ₃ CN, rt, 20 h	PhCH ₂ O ₂ C _N —CH ₂ Ph <i>t</i> -BuO ₂ C	(77)	667
	O H O	THF, rt	O NO CH ₂ Ph	(85)	666
	Phthalimide	THF, rt, overnight	$Cl \qquad Me \\ Cl \qquad N-Pht \\ Cl \qquad Cl \qquad Cl$	(91)	699
CH ₂) ₂ OH	MeO ₂ C.	THF, rt, overnight	$\overset{MeO_2C}{\swarrow} \overset{O}{\underset{O}{\bigvee}} \overset{N-(CH_2)_2}{\underset{S}{\bigvee}} \overset{S}{\underset{S}{\bigvee}}$	(70)	700
Сон	Phthalimide	THF, 3 d, 25°	¢~j€)	(44)	701
HO R	Succinimide	THF, 0° for 40 min, for 2 min	R = Me $R = H$	(84) (61)	702
ОСОН	O H O		of N to		672
			$\begin{array}{l} \mathbf{X} = \mathbf{S} \\ \mathbf{X} = \mathbf{O} \end{array}$	(68) (54)	
	R	-			674
			R Y Yield (%) Me S 82 Me CH ₂ 72 H S 65		
Me ₃ SiC≡C−−−−− R ³ OH	R ¹ R ² NH	-	R^1 R^2 O O R^3 $C \equiv CSiMe_3$	(—)	703
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

536

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)		Refs.
K ^{Me} (CH₂)₃OH		THF, 14 h, rt	S N $(CH_2)_3$ S S	(60)	695, 696
(CH ₂) ₃ OH	S NH	THF, 14 h, rt	$S = N - (CH_2)_3 - S$	(74)	695, 696
Metshoh	J.NH	THF, 14 h, rt	JN- SI Me	(65)	685, 686
C≡CH OH		THF, 36 h, rt	C=CH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		206
СОН	Phthalimide	THF, 3 days, 25°	(59) (26)	(76)	701
(CH ₂) ₃ OH		THF, 14 h, rt	$Me + N - (CH_2)_3 + S$	(57)	695, 690
	Me NH	THF, 14 h, rt	Me + V = V = V = V = V = V = V = V = V = V	(68)	695, 696
HO(CH ₂) _n C=CCH ₂ SiMe ₃	Succinimide	THF	$\bigvee_{n \to \infty}^{0} N \to (CH_2)_n C \equiv CCH_2 SiMe_3$		709
	0		n = 2 $n = 4$	(74) (89)	
Me ₃ Si OH	(CH2)m NH	THF	(CH2)mN-SiMe3		710
C,	0		O m = 2 m = 3	(71) (61)	
Ме ОН	Me O HN NH	THF, 2 d, rt		(53)	711
PhCO ₂ CH ₂ CH ₂ OH	AcO.	-	AcO.	(95)	712
PhCH ₂ O, H D OH	O Phthalimide	THF, 2 h, rt	O D H PhCH ₂ O	(90)	494

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)	Refs.
PhCH ₂ OCH ₂ CD ₂ OH	Phthalimide	-	PhCH ₂ OCD ₂ N—Pht	(96)	713
HO(CH ₂) ₂ N OMe	Phthalimide	THF, overnight, rt	Pht-N(CH ₂) ₂ N OMe	(85)	714, 71
СОН	Phthalimide	THF, 3 days, 25°	N-Pht	(29)	701
HO Me	Succinimide	-	Me Me	(—)	716
остон	Phthalimide	THF, 48 h	o N-Pht	(—)	717
HO OCH ₂ Ph	AcO.	THF, rt, 4 h	AcO.	(95)	718
CCH ₂) ₂ OH	Phthalimide	THF, 0° to rt	Et Et (CH ₂) ₂ N-Pht	(100)	719, 72
х С К К С К С К С К С К С К С К С К С К	NH NH	-	$x \xrightarrow{R} y \xrightarrow{R} y \xrightarrow{R} y$	(80–83)	721
R R ¹	Succinimide	THF, rt, overnight	H CH ₂ CH=CH ₂ H CH ₂ CH=CH ₂ OMe CH ₂ CH ₂ CH=CH ₂ OMe CH ₂ CH ₂ CH=CH ₂ $R \xrightarrow{R^1}$ $R \xrightarrow{R^1}$ $R \xrightarrow{R^1}$ $H \xrightarrow{R^1}$ H H H H H H H H	()	722, 72

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)	. T	Refs.
	Me O Me NH	÷	Me Me N S		682
\bigcap	Phthalimide	Toluene, rt, 2 h	$R^{1} = R^{1} = H$ $R = MeO, R^{1} = H$	(72) (57) (87)	724
Ac OCH ₂ CH ₂ OH	Phthalimide	THF, 25°, 12 h	Ac OCH ₂ CH ₂ N-Pht	(89)	725
Ph OH	Glutarimide	THF, rt, 17 h		(55)	726
SCHCH ₂ OH	Succinimide	THF, rt, 18 h	SCHCH ₂ -N	(25)	727
HC=C	Phthalimide	THF, rt, 1 h		(70)	728
MeO OH MeO	H NH	THF, rt, 14 h	MeO N O	(70)	685, 686
MeO MeO OMe	K NH	THF, rt, overnight	MeO S	(87)	682
$F \xrightarrow{F} OH CO_2 Bu-t$	Phthalimide	THF	Pht-N- F F F F F F F F	(—)	729
F OH	Phthalimide	THF	Pht-N-F CO ₂ Bu-t	(—)	729
HO H	Succinimide	THF, 0° to rt, 1.25 h		(62)	730, 731

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)		Refs.
С	Phthalimide	THF, rt, 48 h	N-Pht	(40)	732, 733
	Succinimide		Loop y	(50)	732, 733
°×°	Phthalimide	THF, 22°, 15 h	Pht N	(66)	734
ОСТОН	Phthalimide	THF, 3 days, 25°		(50)	701
с,	Phthalimide	THF, 48 h, rt	N-Pht	(37)	732, 733
(CH ₂) ₃ OH	S NH	THF, rt, 14 h	$\bigcup_{S} - (CH_2)_3 - N = S$	(55)	695, 696
HOCH ₂ HOCH ₂ HOCH ₂ HOCH ₂ HOCH ₂ HOCH ₂ HOCH ₂ HOCH ₂	Phthalimide	THF, rt, overnight	Pht-NCH ₂ O	(60)	241
R SO ₂ NCH ₂ CH ₂ OH	Phthalimide	THF, rt, overnight	R SO ₂ NCH ₂ CH ₂ N-Pht		735
			R Yield (%) R Yield (%) H 78 n-Bu 79 Me 87 n-C_6H_{13} 85 Et 84 n-C_8H_{17} 54 <i>i</i> -Pr 90 PhCH ₂ 63	(%)	
OCH ₂ Ph OH	Phthalimide	THF, rt, 5 h	N-Pht	(79)	532
PhCH-O	Phthalimide	rt, overnight	Pht-NOCH2Ph	(78)	736
HC≡C NHCO ₂ Bu-t	Phthalimide	THF, rt, 12 h	HC≡CN-Pht NHCO ₂ Bu-t	(—)	737

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)	Refs.
HC≡C(CH₂)₀OH		THF, rt, overnight	Me + O = O = O = O = O = O = O = O = O = O	2) 682
И ОН	Phthalimide	THF, rt, 48 h	N-Pht (3	8) 732, 733
	Succinimide	71	And A	8) 732, 73
(CH ₂) ₉ OH	Phthalimide	THF, rt, 48 h	O (CH ₂) ₉ N-Pht (3)	3) 732, 733
$R^{2} \xrightarrow{R^{1}} R^{3} \xrightarrow{R^{4}} R^{6}$	Phthalimide	THF, rt, 20–60 h	$R^{2} \qquad R^{1} \qquad \qquad$	204
PhCH ₂ O ₂ C N Et	PhCH2O2C 1-BuO2C	R ¹ R ² R ³ CF ₃ H H H CF ₃ H H H CF ₃ H H H H H H H H H H H H H H H H H H H H CF ₃ H H H H H H H H H H H H	R4 R5 R6 Yield (%) exo/end H OH H 33 11/89 H OH H 34 7/93 H OH H 34 7/93 CF3 OH H 13 33/67 H OH H 24 72/28 H H OH 62 100/0 H H OH 64 100/0 H H OH 63 100/0 CF3 H OH 36 100/0 CF3 H OH 53 100/0 PhCH ₂ O ₂ C N N N CO ₂ CH ₂ Ph (7	- - - 9) 667
	Phthalimide	Pyridine, 0° to 25°, 2.5 h	CH ₂ N-Pht OH HO Pht-N O O OH	2) 738
но	Phthalimide	Pyridine, rt, 48 h	CH ₂ N-Pht HO HO	8) 738

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)		Refs
ОН		-			739
MeO	Phthalimide	THE 72 h rt		(84)	205
мео ОН	Phthalimide	11	H MeO N-Pht	(87)	205
H OH Ph	Phthalimide	THF, 2.5 h, rt	H Ph N-Pht	(58)	740
HOOCH2Ph	R NH	THF, rt, overnight	R = Me = H	(68) (80)	741
C≡CCH ₂ OH CO ₂ Bu-r	Succinimide	÷	= Ph	(—) (91)	742
мео ССССХ	Succinimide	THF, rt, 18 h	Meo		743
N R	Succinimide	THF, rt, 18 h	$\begin{array}{c} x = 0 \\ X = S \end{array}$	(30) (35)	744
MeO R			$\begin{array}{c} MeO \\ R = H \\ R = Me \end{array}$	(30) (53)	

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)		Refs.
MeO MeO	Glutarimide	THF, rt, 3 days	MeO MeO	(47)	745
HOOCH ₂ Ph	Phthalimide	THF, 12 h, -20°	Pht-NOCH2Ph	(70)	746
PhMe ₂ Si OH	AcO.	THF, 4 h, rt	AcO.	(96)	676
F F C=C=C OH	Phthalimide	1	F F F N-Pht	(—)	747
HO(CH ₂) ₃ N Bu- <i>i</i> N OMe	Phthalimide	THF, rt, overnight	Pht-N-(CH ₂) ₃ N OMe	(93)	714, 71
Jan San OH	I Succinimide	THF, rt, 48 h	the second	(52)	732, 73
(CH ₂) ₃ OH	Phthalimide	THF, rt, 48 h	(CH ₂) ₃ N-Pht	(39)	732, 733
	Succinimide		(CH ₂) ₃ -N	(50)	732, 733
C ₁₃ OH FN-Pht	Phthalimide	÷	FN-Pht	(60)	748
мео	Succinimide	THF, rt, 18 h		(40)	749
HOCHANNE	Phthalimide	THF, rt, 72 h	Pht-N CH2pNB	(42)	717
OCH ₂ Ph	Phthalimide	THF	OCH ₂ Ph N-Pht	()	750
MeO CH ₂ OH	Phthalimide	THF rt, 12 h	Meo CH ₂ N-Pht	(—)	751
O N CH ₂ Ph	Phthalimide	THF rt, 20 h	N-Pht N-Pht CH ₂ Ph	(—)	752

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)		Refs.
HOCH ₂ C=C, CO ₂ Bu-t	Succinimide	-	$\bigvee_{O}^{O} N-CH_2C \equiv C, CO_2Bu-t$	(72)	742
OH OCH ₂ OMe	Phthalimide	THF, 14 h, rt	Pht-N OCH ₂ OMe	(60)	753
OH OCH ₂ OMe	Phthalimide	THF, 14 h, rt	Pht-N OCH ₂ OMe	(57)	753
HC=C(CH ₂) ₁₁ OH	S NH	THF, rt, overnight	$HC \equiv C(CH_2)_{11} - N + S$	(81)	682
$HC \equiv C F F \\ HO \qquad \qquad N-Pht$	Phthalimide	THF, rt, 65 h	HC≡C F F Pht-N N-Pht	(36)	754
^{<i>i</i>-Pr} →−C≡CCH ₂ CH ₂ OTHP	Phthalimide	THF, 16 h, reflux	Pht-N C=CCH ₂ CH ₂ OTHP	(60)	755
R-II OH	NH NH	THF, rt, 14 h	R-C) N-C N-C		756
,CH₂OH				(73) (70) (73)	
	Phthalimide	THF, 0–25°, 1 h		(87)	757
Men H OH OH	Phthalimide	-	Me H N-Pht N-Pht	()	758
CH ₂ Ph	Phthalimide	THF rt, 20 h	N-Pht N-Pht CH ₂ Ph OMe	(86)	752
Me MeO MeO MeO MeO	Phthalimide	THF, rt, 2 h	Me MeO OMe CH-N_Pht	(50)	759

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

	Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₅ MeO	$\gamma\gamma$			MeO	
) z /	H CD ₂ OH	Phthalimide	C_6H_6 , reflux, 3 h	NH CD ₂ N-Pht	0) 760
R^1 R^2	ОН	Phthalimide	THF, 14 h	R ¹ R ² N-Pht	761, 762
		0		$R^{1} = H, R^{2} = MeO$ (8 $R^{1} = R^{2} = MeO$ (7 O	2) 3)
		NH NH	-	R ¹ R ²	763
				$R^1 = MeO, R^2 = H$ (9)	2)
MeO	CH R ¹ R ¹	Succinimide	THF, 18 h, rt	Meo R R	764
CH ₃ OCH ₂	0 OCH2OCH1			$R^{I^{*}} R^{I}$ $R = H, R^{I} = Me$ $R = Me, R^{I} = H$ $CH_{3}OCH_{2}O QCH_{2}OCH_{3}$ (3)	3) 5)
HO C ₁₆ MeO	OCH ₂ Ph	Phthalimide	THF, 0° to rt	Pht-N OCH ₂ Ph (9	2) 719, 72
MeO	ОН	NH	-		99) 765
Met PhCH ₂ O MeOC		Phthalimide	0° to rt	MeOCH ₂ O PhCH ₂ O MeOCH ₂ O N-Pht O	—) 692
но	Sn(Bu-n) ₃	Succinimide	THF, 23°	$\bigvee_{0}^{N} \sum_{n \in \mathbb{N}} Sn(Bu-n)_{3} $	95) 766

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)		Refs
	Phthalimide	THF, 22°, 15 h	OCH ₂ Ph N-Pht	(58)	734
OH Sn(Bu-n) ₃	Phthalimide	THF	N-Pht Sn(Bu-n) ₃ (65	-80)	767
Me OH O2CPh	Phthalimide	-	Me O ₂ CPh	(82)	768
HOSnBu ₃	Succinimide	THF, rt, 20 min	SnBu ₃	(73)	769
HOCH ₂ N Cl Ph	Phthalimide	1 h, rt	Pht-N N CI Ph	(88)	770
<i>t</i> -BuMe ₂ SiO H H S ON OH CO ₂	X S NH	THF, rt	$H = CO_2 - CO_$	1–98) (48)	771
	C N N	H THF, rt		1–98)	771
	NH X ^{NH}	THF, rt			771
	R ¹ R ² ····································	THF, rt	$X = CO (81-98), X = SO_2 (57)$ $H S R^1$ R^2	(—)	771

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

Alcohol	Imide	Conditions	Product(s) and Yield(s) (%)	6.5.1	Refs.
PhCH ₂ O PhCH ₂ O	Phthalimide	THF, overnight, rt	PhCH ₂ O PhCH ₂ O	(60)	775
PhCH ₂ O MeOCH ₂ O MeOCH ₂ O OH	Phthalimide	THF, rt, 14 h	MeOCH ₂ O PhCH ₂ O MeOCH ₂ O N-Pht	(64)	776
HO OSiMe ₂ Bu- <i>t</i>	Phthalimide	DMF	Pht-N N OSiMe ₂ Bu-t	(100)	777
PhCH ₂ O HO C ₁₄ H ₂₉ -n	Phthalimide	THF, 20°, 20 h	PhCH ₂ O Pht-N C ₁₄ H ₂₉ -n	(77)	202
$Me_{3}SiC \equiv C \xrightarrow{OH} OSiPh_{2}Bu-t$	Phthalimide	THF, rt, 18 h	Me ₃ SiC≡C OSiPh ₂ Bu-t	(79)	778
HO. H H. CO ₂ Et OCH ₂ Ph PhCH ₂ O	Phthalimide	THF, rt, 18 h	Pht-N H H CO ₂ Et OCH ₂ Ph	(64)	779
OH Me₃SiC≡C→→ (CH₂)₃OSiPh₂H	Phthalimide Bur	THF, rt, 18 h	NPht (CH ₂) ₃ OSiPh ₂ But	(46)	778
HO BnOO BnO OBn	Phthalimide	1) THF, rt, overnight 2) Hydrazine, EtOH	H ₂ N BnOOMe BnO OBn	(81)	780
PhCH ₂ O PhCH ₂ O MeO OH	Phthalimide	THF, 0°, 3 h	PhCH ₂ O PhCH ₂ O MeO N-Pht	(83)	612
MeO MeO MeO MeO MeO MeO MeO MeO MeO MeO	<i>le</i> Phthalimide	THF, rt, 3 h	MeO MeO MeO HeO HeO HeO H2N-Pht	(100)	781, 78

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

TABLE XV. CARBON-NITROGEN BOND FORMATION, IMIDES (Continued)

	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₃	ОН		N ₃		
	CO-H	C ₆ H ₆ , HN ₃ , 4-24 h, rt	Сон	(—)	208
0	HOCH(CH ₂ OH) ₂	C_6H_6 , HN_3 , 3 h, 50°	HOCH(CH ₂ N ₃) ₂	(—)	208
C4	HOCH ₂ C=CCH ₂ OH		N ₃ CH ₂ C=CCH ₂ N ₃	()	208
C.	HOCH2 CH2OH	C ₆ H ₆ , HN ₃ , 4-24 h, rt	N ₃ CH ₂ CH ₂ N ₃	(—)	208
-,	OCH2OH	C ₆ H ₆ , HN ₃ , 4-24 h, rt	OCH2N3	(—)	208
	OH CO ₂ Et	$Zn(N_3)_2$, toluene, rt, 0.5–2 h		(83)	787
C ₆	C ₂ H ₅ O(CH ₂) ₂ O(CH ₂) ₂ OH	C ₆ H ₆ , HN ₃ , 3 h, 50°	C ₂ H ₃ O(CH ₂) ₂ O(CH ₂) ₂ N ₃	(—)	208
C ₇	PhCH ₂ OH		PhCH ₂ N ₃	(—)	208
	N S HO R ¹	Toluene, HN ₃ , rt	$R^{2}O_{2}C$ N R^{3} R^{1} $R^{1} = Me_{i} i \cdot Bu_{i} \cdot S \cdot Bu_{i} i \cdot Pr_{i} PhCH_{2}$	(83–90)	788
	t-BuO2CNHCH2CH2OH	HN ₃ , THF, toluene	$R^2 = Me, Et$ <i>t</i> -BuO ₂ CNHCH ₂ CH ₂ N ₃	(—)	717
C ₈	n-C ₆ H ₁₃	C ₆ H ₆ , HN ₃ , 3 h, 50°	N ₃ n-C ₆ H ₁₃	()	208
	OH n-C ₆ H ₁₃	$Zn(N_3)_2$, toluene, rt, 0.5–2 h	N3 n-C6H13	(81)	787
	Ph(CH ₂) ₂ OH	$Zn(N_3)_2$, toluene, rt, 0.5–2 h	Ph(CH ₂) ₂ N ₃	(83)	787
C.		$Zn(N_3)_2$, toluene, rt, 0.5-2 h	N ₃ OAc	(80)	787
4	PhCO ₂ Me	C ₆ H ₆ , HN ₃ , 4-24 h, rt	Ph CO ₂ Me	(—)	208
	NHCO ₂ Bu-t HOCO ₂ Me	THF/C ₆ H ₆ , HN ₃ , overnight, rt	NHCO ₂ Bu-t N ₃ CO ₂ Me	(73)	790
		-	n-C ₆ H ₁₃	(100)	791
	n-C ₆ H ₁₃	÷.	N3 n-C6H13	(—)	791
	CH20H	Zn(N ₃) ₂ , THF, rt	CL.	(75)	527
	PhCH=CHCH ₂ OH	$Zn(N_3)_2$, toluene, rt, 0.5–2 h	PhCH=CHCH ₂ N ₃	(85)	787
	РЬСН-ОН	$Zn(N_3)_2$, toluene, rt, 0.5-2 h	Ph CH-Na	(78)	787
	in chijori		in chizity		

TABLE XVI. CARBON-NITROGEN BOND FORMATION, AZIDES

$Zn(N_3)_2$, toluene, rt, 0.5-2 h		(85)	787
HN ₃ , THF/toluene, 2 h, rt		(85)	792
THF/C_6H_6 , HN_3 , -35° , 1 h	r-BuMe ₂ SiO N ₃ P OMe OMe	(90)	793
Toluene, HN ₃ , rt, overnight		(90)	395
$Zn(N_3)_2$: (pyridine) ₂ , toluene	N3 CN Me	(76)	251
C ₆ H ₆ , HN ₃ , 3 h, 50°	N ₃ NHCO ₂ Bu-t	(—)	208
(PhO) ₂ PON ₃ , THF, 1.5 h, rt	O. OCH ₂ Ph	(61)	794
C ₆ H ₆ , HN ₃ , 1.5 h, rt	PhCH ₂ O PhCH ₂ O PhCH ₂ O PhCH ₂ O PhCH ₂ O PhCH ₂ O PhCH ₂ O	(70)	793
HN ₃ , C ₆ H ₆	N ₃ CO ₂ Me NHCO ₂ Bu-r	(—)	795
HN ₃ , C ₆ H ₆ , 0.5 h, 60°		(73)	796
CH ₂ Cl ₂ /C ₆ H ₆ , HN ₃ , rt, 20 h	PhCH ₂ O ₂ CNH(CH ₂) ₄ N ₃	(95)	797
HN ₃ , C ₆ H ₆ , rt, 24 h		(52)	798
$Zn(N_3)_2$, toluene, rt, 0.5–2 h	XLLO	(82)	787
-	MeO ₂ CCH ₂ N ₃ N ₃ N ₃ N ₃	(—)	799
	Zn(N ₃) ₂ , toluene, rt, 0.5–2 h HN ₃ , THF/toluene, 2 h, rt THF/C ₆ H ₆ , HN ₃ , -35° , 1 h Toluene, HN ₃ , rt, overnight Zn(N ₃) ₂ : (pyridine) ₂ , toluene C ₆ H ₆ , HN ₃ , 3 h, 50° (PhO) ₂ PON ₃ , THF, 1.5 h, rt HN ₃ , C ₆ H ₆ HN ₃ , C ₆ H ₆ HN ₃ , C ₆ H ₆ , n, n, 20 h HN ₃ , C ₆ H ₆ , HN ₃ , rt, 20 h HN ₃ , C ₆ H ₆ , rt, 24 h	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{ccccc} Zn(N_{1})_{2}, toluene, rt, 0.5-2 h & & & & & & & & & & & & & & & & & & $

TABLE XVI. CARBON-NITROGEN BOND FORMATION, AZIDES (Continued)

	Alcohol	Conditions	Product(s) and Yield(s) (%)	1	Refs.
C	Ph OH Ph CH ₂ NH ₂	HN ₃ , toluene	Ph N ₃ CH ₂ NH ₂	(83)	800
C16	O N CO ₂ CH ₂ C ₄ H ₄ NO ₂ -4	HN ₃ , THF, 15 min	N CO ₂ CH ₂ C ₆ H ₄ NO ₂ -4	(80)	801
	OH n-C ₆ H ₁₃ OCH ₂ Ph	HN ₃ , C ₆ H ₆	n-C ₆ H ₁₃ OCH ₂ Ph	(85)	802
C	n-C ₆ H ₁₃ OCH ₂ Ph	HN ₃ , C ₆ H ₆ , 25°, 3 h	n-C ₆ H ₁₃ , OCH ₂ Ph	()	625
C ₁₈	t-BuMe ₂ SiO H H ONCOT	HN3	H N CO_2	(95)	771
C ₁₉	OH C ₁₂ H ₂₅ -n	(PhO) ₂ PON ₃ , THF, rt, 24 h	N ₃ C ₁₂ H ₂₅ -n	(83)	803
C ₂₀	$ \begin{array}{c} HO \\ H \\ H \\ H \\ H \\ H \\ SR \\ O \\ CO_2 pNB \end{array} $	HN ₃ , toluene/THF, rt, 20-30 min	R = CH=CHNHAc	(61)	31
C ₂₁	NH ₂ N (CH ₂) ₄ OH	HN3, CH2Cl2, rt	$R = CH_2CH_2NHAc$ NH_2 NH_2 $(CH_2)_4N_3$	(48) (77)	804
	R ¹ NH ₂ OH	HN ₃ , toluene, rt, 15 h	R ¹ NH ₂ NH ₂ N ₃		800
	N-N		$R = C_{6}H_{11}, R^{1} = H$ $R = Ph, R^{1} = H$ $R = 4-MeOC_{6}H_{4}, R^{1} = H$ $R = 4-MeOC_{6}H_{4}, R^{1} = MeO$ N=N	(30) (35) (60) (50)	
	(<i>i</i> -Pr) ₂ Si	HN ₃ , C ₆ H ₆ , 18 h, 80°	(i-Pr) ₂ Si	(18)	207

TABLE XVI. CARBON-NITROGEN BOND FORMATION, AZIDES (Continued)
_	Alashal	Conditions	Product(a) and Viold(a) (01)	Defe
	Alcohol	Conditions	Product(s) and Yield(s) (%)	Reis.
C ₂₂	t-BuMe ₂ SiO HO O Me HO N CO ₂ Bn	HN3, C6H6/CH3CN	$\stackrel{t-\mathrm{BuMe_2SiO}}{N_3} \xrightarrow{\mathrm{O}} (70)$	805
C ₂₃	HO AcO AcNH t-BuMe ₂ SiO	HN3, C6H6	AcO N_3 OAc OMe AcNH O CO ₂ Me (21) <i>i</i> -BuMe ₂ SiO AcO N_3 OAc OMe + AcNH O CO ₂ Me (28)	806
C ₂₆	Ph PhMe ₂ C O Me	(PhO)2PON3, THF, rt, 48 h	PhMe ₂ SiO $PhMe_2C \xrightarrow{O} O$ Me (79)	807
	HO.	HN ₃ , C ₆ H ₆ , 9 h, 80°	$HO. \qquad HO. $	285
C ₂₈	HO HO	Zn(N ₃) ₂ , toluene, rt, 0.5–2 h		787
	O O O O O O O O O O	HN ₃ , toluene, -15°	$ \begin{array}{c} & & \\ & & $	774
	OCH ₂ OMe HO N OSiPh ₂ Bu- <i>t</i>	HN ₃ , C ₆ H ₆ , 1 h, rt	OCH ₂ OMe N ₃ (95) r-BuO ₂ C	808
C ₂₉	C ₆ H ₁₁ HO OBn	(PhO) ₂ PON ₃	$C_6H_{11} \xrightarrow{OBn}_{N_3 OBn} \xrightarrow{N}_{OBn} (43)$	809
- 30	r-BuO ₂ CNH C ₆ H ₁₁ CH ₂ OH CO ₂ Bn	HN ₃ , THF, rt, 16 h	$\begin{array}{c} OMEM \\ t-BuO_2CNH \\ C_6H_{11}CH_2 \\ N_3 \\ CO_2Bn \end{array} $ (82)	810

TABLE XVI. CARBON-NITROGEN BOND FORMATION, AZIDES (Continued)

	Alcohol	Conditions		Produ	ct(s) and	Yield(s) (%)		Ref
R^{1}	OH H OR ³	_	R ¹	V OR ³				811
			R	R ²	R ³	% Yield		
			Me NHCbz NHCbz NHCbz	Me H H H	Boc Boc t-Bu CPh ₃	70 71 63 56		
OH N	CO ₂ R	(PhO) ₃ P, 12 h, 60–70°		CO ₂	R			216
0			$R = Me$ $R = R^{1}$ $R = CH$	$R^{1} = CH_{1}$ $= CH_{1}$ R^{1}	CH_2Ph Ph = Boc		(50) (35) (70)	
, R ¹ CONH	$HO = R^3 = R^3 = R^3 = R^3 = R^3$	_	R ¹ CONH C		R ² R ⁵ R ⁴ CO ₂ R ⁶		(—)	812
	CO2K		$R^{1} = t \cdot E$ $R^{2} = H$, $R^{3} = H$, $R^{4} = H$, $R^{5} = H$, $R^{6} = Ph$	BuO, P Me Me, E Me Me Me CH ₂ , t	•Bu, Ph ₂	сн		

TABLE XVII. CARBON-NITROGEN BOND FORMATION, β -Lactams

	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
C, CH ₂ =0	HO H		CH ₂ =CHCH ₂ CH ₂	
ŎН	O H OMe	THF, 25°	O Me (75)	423
\checkmark	NHOMe	THF, 25°, 1 h	0 N OMe (75)	426
C ₁₁ He	0 L-H CO ₂ R	THF, rt, 11 h	H CO_2R (78–96) OCH_2Ph	396
CbzN		THF, 3 h, rt	$R = Me, Et, i-Pr, PhCH_2$ CbzN R (21-51)	813
			R = - N = N = N = N = N = N = N = N = N =	
			S Ph ₃ CO (51) (50)	
C ₁₂ Pht-N	$ \downarrow_{\substack{N \\ H \\ R^2}}^{OH} R^1 $	THF, rt, 1–3 h	Pht-N N R^2 $R^$	211
	OH		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0	Me N N N N N N	THF, 0°, 0.5 h	ONN (68)	814
C ₁₃ CbzNF	HO = HO = HO = HO = N = N = N = N = N = N = N = N = N =	THF, 12 h, rt	$\begin{array}{c} CbzNH \\ & &$	813
H	O L-CO ₂ Et H H OCH ₂ Ph	THF, 4 h, rt	$ \begin{array}{c} H \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	815
н	OH		u	

Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
F F O NH R Pr-i	THF, 25–50°, 1 h	$F = OBn$ $R = 0Bn$ $R = 4-MeOC_6H_4$	(54) (100)	817
C ₁₄ RO ₂ CNH OH Ph O H OH	-	RO ₂ CNH Ph CO ₂ Me	(40–70)	818
Et HO H CO ₂ Me H OCH ₂ Ph	÷.	Et CO ₂ Me	(75)	396
Et. HO H CO ₂ Me O H OCH ₂ Ph	-	Et. OCH ₂ Ph	(75)	396
	THF, 1.5 h, rt	$Et \qquad Ph \\ O \qquad OR \\ R = Me, PhCH_2$	(80)	819
	THF, 30 min, rt	H NHBoc N OMe	(70)	820
HO Et. O H OCH ₂ Et	THF, rt, 7 h	Et. OCH ₂ Ph	(80)	819
OH O NHOSiMe2But	THF, DMAD, rt	OSiMe2Bu-t	(75)	821
n-C ₅ H ₁₁ NHOCH ₂ Ph	THF, rt, 10 h	N3 C5H11-n O OCH2Ph	(—)	822
BocNH HO CO ₂ Me H HOCH ₂ Ph	THF, 4 h	BocNH CO ₂ Me N OCH ₂ Ph	(50)	823
BocNH HO H CO ₂ R O H OCH ₂ Ph	THF, 3 h	$R = Et$ BocNH CO_2R O OCH_2Ph	(38) (78) (67)	823
Me Me CO ₂ Pr- <i>i</i> O H OCH ₂ Ph	-	Me CO ₂ Pr-i	(—)	824

	Alcohol	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₇ Cbz	NHOH	CH ₂ Cl ₂ , rt, overnight	CbzNH (50)	825
Вос	NH HO Me		BocNH Me Me NHBoc	
	O H OCH ₂ Ph	THE	N_{OCH_2Ph} O_{CH_2Ph} O_{CH_2Ph} O_{CH_2Ph} O_{CH_2Ph}	4a
Ph		THF	$Ph \longrightarrow N_{OCH_2Ph}^{H}$ (34)	826, 82
Cbz	NH OH OH C ₆ H ₄ Me-4	-	$\begin{array}{c} CbzNH \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	215
Cbz	OH OH HOCH2Ph		CbzNH OCH ₂ Ph ()	215
Boc	OH CH ₂ CO ₂ Bn OH NN N-N	THF	$ \begin{array}{c} \text{BocNH} & \text{CH}_2\text{CO}_2\text{Bn} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	828
Во	CNH OH O H N-CH ₂ CO ₂ Bn	THF	BocNH N N N CH_2CO_2Bn (57) N=N	828
НО	CONHOBn BocNH	THF, 2 h, rt	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ BocNH & O \\ (43) & & BnO \\ & & & & \\ & & & \\ &$	218
C ₁₉			+ BocNH N _{OBn} (13)	
Pht-	$ \begin{array}{c} & OH \\ & Me \\ & H + CO_2Et \\ & CO_2Et \end{array} $	THF, rt, 1 h	Pht-N N CO_2Et CO_2ET CO	211
or	OH CH ₂ CH ₂ OCH ₂ Ph N OCH ₂ Ph	THF, rt, 16 h	OCH ₂ Ph OCH ₂ Ph (75-85)	635

TABLE XVII. CARBON-NITROGEN BOND FORMATION, B-LACTAMS (Continued)

	Alcohol	Conditions	Product(s) and Yiel	d(s) (%)	Refs.
CbzNH	HO CH ₂ OR H N-CH ₂ Ph	THF, rt	CbzNH CH2OR CH2OR N CH2Ph N N	(—)	829
He Et.	O CO ₂ Me	_	$R = CONH_2,$ CO_2Me $O = OCH_2Ph$	(67)	830
CbzNH,	R R H O CO ₂ Bn	CH ₂ Cl ₂ , overnight	CbzNH N O CO ₂ Bn		831
• BuMa	sio HO II		R = Ph $R = CH_2Ph$	(65) (79)	
1-Dume	O H OCH ₂ Ph		O N OCH ₂ Ph		217
			+ PhCH ₂ O-N II DMAD DEAD DIAD	I (40) I (22) + II (5.5) I (14) + II (14)	
C ₂₁ CbzNH	OH CH ₂ Ph H O CO ₂ Me	CH ₂ Cl ₂ , overnight, rt	CbzNH CH ₂ Ph CH ₂ Ph CO ₂ Me	(70)	831
t-BuO₂0	CNH N H N H N H	THF, 55°, 6 h			832
	Ph		R = H R = Me	(66) (68)	
BnONH C ₂₂	O OH OSiMe ₂ Bu- <i>t</i> CO ₂ Me	-	OSiMe ₂ Bu- <i>t</i>	(66)	833
CbzNH	NHCbz	THF, 12 h	CbzNH O NO H NHCbz	(62)	826, 827

TABLE XVII. CARBON-NITROGEN BOND FORMATION, B-LACTAMS (Continued)

TABLE XVII. CARBON-NITROGEN BOND FORMATION, β -Lactams (Continued)

	Alcohol	Nitrogen Compound	Conditions	Product(s) and Yield(s) (%)	Refs.
C,		NHBoc		BocNH Me	
MeOH		NHOCH ₂ Ph	THF, rt, 20 h	N-OCH ₂ Ph (39	9) 839
				Ö N/Me)SO.CE	
		KIISO2CF3	THF	(-) 840
C ₂	D 4			Pl	
			Ether/THF,	N	221
	R ³	-	2–18 h, rt	R^4 R^2 R^3	221
				R^1 R^2 R^3 R^4 Yield (%)	
				H H H Ph 0	
				PhCH ₂ H H H 18 PhCH ₂ Me H H 59	
				PhCH ₂ H H Me 90 PhCH Me Me H 80	
				PhCH ₂ H H Ph 65	
				$h - C_0 H_{11}$ H H Ph 80 t-Bu H H Ph 77	
C3				Me Me H Ph 84	
P-OU		° I	CH rt	(EtO) PNPr.i (7	3) 230a
FION		(EtO) ₂ PNHBoc	C6116, 11	Boc	5) 250a
		TsNHMe CE-SO-NHMe	THF	<i>i</i> -PrNMeTs (5: CF-SQ-N(Me)Pr- <i>i</i> (8)	3) 840 2) 840
		CF ₃ SO ₂ NHPh	THF	$CF_3SO_2N(Ph)Pr-i$ (20	6) 840
	R	o	D .0		
но	Сон	(EtO) ₂ PNHBoc	Et_2O , rt	(EtO) ₂ PN (58-72	2) 229
				R = H, Me, Et, <i>n</i> -Pr, CH ₂ Ph	
R		Ŷ	THF, rt,	O R	
носо	0 ₂ Me	Cl ₃ CH ₂ CH ₂ O NHOCH ₂ P	overnight, h DIAD	Cl ₃ CH ₂ CH ₂ O N CO ₂ Me PhCH ₂ O	228
				I	
				+ i-PrO ₂ C-N _N O + VCO ₂ M	le
				CO ₂ Pr-i H	r-i
				п ш	
				R R ¹ % I % II % III	
				H — 30 — — Me — 82 9 —	
				Et - 59 9 -	
				i-Pr $- 20$ 48 $-i$ -Bu i -Pr 50 14 10	
				PhCH ₂ Ph 43 20 11	
-4				0	
n-BuOH		<u> </u>	C ₆ H ₆ , rt	(EtO) ₂ PNBu-n (8:	5) 230a
		(EtO)2PNHBoc		Boc	

TABLE XVIII. CARBON-NITROGEN BOND FORMATION, GENERAL

Alcohol	Nitrogen Compound	Conditions	Product(s) and Yield(s) (%)		Refs.
<i>i</i> -BuOH	**		O (EtO) ₂ PNBu- <i>i</i> Boc	(77)	230a
s-BuOH	O II (EtO) ₂ PNHBoc	C ₆ H ₆ , rt	O (EtO) ₂ PNBu-s Box	(66)	230a
OH ,	CF ₃ SO ₂ NHMe	THF	N(Me)SO ₂ CF ₃	(84)	840
ОН	Ph-NH Ph-N-Ph	THF, 4 h, rt	Ph-N-Ph	(34)	841
RC=CCH2CH2OH	NNN NHCO2Me	÷	^N [∞] N N [−] CO ₂ Me		274, 842
			$R = H$ $R = Me$ $R = CH_2OTHP$	(19) (22) (13)	
RC≡C(CH₂)₀OH	CI N*N NHCO2Me	THF, 25°, 8 h	CI = N = N $N = CO_2 Me$ $(CH_2)_n C = CR$		274, 842
			R n Yield (%)		
			Me 2 43 H 2 47 CH ₂ OTHP 2 37 CH ₂ OTBDMS 2 45		
			H 3 53 H 4 48		
OH CO ₂ Et	Adenine	÷		()	843
HO HCO2Et	PhCH ₂ O ₂ CNHOCH ₂ Ph	-	CO ₂ Et Me H PhCH ₂ O ₂ CN CO ₂ Et	(37)	844
	O II (EtO)+PNHBoc	C ₆ H ₆ , rt	OCH ₂ rn O (EtO) ₂ PNC ₅ H ₉		230a
С₃Н₀ОН	(210)2-112-11		DUC		
С₃Н₃ОН л-РгСН(СН₃)ОН		39	O U (EtO) ₂ PNCH(Me)Pr- <i>n</i>		230a

TABLE XVIII. CARBON-NITROGEN BOND FORMATION, GENERAL (Continued)

	Alcohol	Nitrogen Compound	Conditions	Product(s) and Yield(s) (%)	- 20	Refs.
	Сн20н	DEAD	THF, 1 h, rt	$ \underbrace{ \begin{array}{c} & & \\ &$	(60)	256
			"	$ \begin{array}{c} $	(90)	256
	MeC≡C ── OH	TsNHMe	THF, rt, 3 h	MeC=C-NMeTs	(51)	230b
		TsNHBoc	THF, rt, 3 h	MeC≡CNBoc	(96)	230Ь
	>он	TsNHBoc	THF, rt, 3 h		(85)	230b
	ОН	DEAD	THF, rt, 1 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	(78)	256
	H ₂ N(CH ₂) ₅ OH	-	HCI, DMF		(23)	222
C _f	онс-С-сн20н	DEAD	THF, rt, 1 h	OHC	(12)	256
	N(Me)SO ₂ CF ₃	CF ₃ SO ₂ NH(CH ₂) ₇ - NHSO ₂ CF ₃	THF	N(Me)SO ₂ CF ₃ SO ₂ CF ₃ N(Me)SO ₂ CF ₃ N(Me)SO ₂ CF ₃ SO ₂ CF ₃	(80)	840
	ОН	TsNHMe	THF, rt, 3 h		(62)	230b
		TsNHBoc	THF, rt, 3 h	\diamond	(86)	230b
	ОН	TsNHBoc	THF, rt, 3 h	NBoc Is	(88)	230b
C.	ОН	TsNHBoc	THF, rt, 3 h	TsNBoc	(75)	230b
C/	PhCH ₂ OH	O (EtO) ₂ PNHBoc	C₀H₀, rt	(EtO) ₂ PNCH ₂ Ph Boc	(80)	230a
	РһСН₂ОН	TsNHMe CF3SO2NHMe CF3SO2NHPh TsNHPh	THF, rt, 3 h THF THF THF THF	PhCH ₂ NMeTs CF ₃ SO ₂ N(Me)CH ₂ Ph CF ₃ SO ₂ N(Ph)CH ₂ Ph TsN(Ph)CH ₂ Ph	(50) (70) (41) (68)	230b 840 840 840
	PhCH ₂ OH	PhNH ₂	HCl, DMF/THF	PhNHCH₂Ph	(10)	222
C,		L N N	"	CH ₂ Ph	(43)	222
	n-C ₆ H ₁₃ CH(Me)OH	O II (EtO)2PNHBoc	C_6H_6 , rt	(EtO) ₂ PNCH(Me)C ₆ H ₁₃ -n Boc	(71)	230a

Nitrogen Compound	Conditions	Product(s) and Yield(s) (%)	2	Refs.
↓ 0 ↓ N OCH ₂ Ph	THF, rt	$(CH_2)_3$ NHBoc O O O O O O O O O O	(70–90)	845
BocNHOCH ₂ Ph	THF, rt	$X = H, NO_2$ BocNOCH ₂ Ph $\downarrow (CH_2)_3NHBoc$	(41)	845
AcNHOCH ₂ Ph	THF, rt	O(CH ₂) ₃ NHBoc	(—)	845
DEAD	THF, 1 h, rt	$\begin{array}{c} CO_2 Et \\ N \\ n - C_8 H_{17} \\ H \end{array} \xrightarrow{N} \begin{array}{c} N \\ N \\ H \end{array} \xrightarrow{CO_2 Et} \\ H \end{array}$	(44)	256
"	"	CO ₂ Et PhCH ₂ CH ₂ -N _N -CO ₂ Et	(37)	256
		H CO_2Et I 4-MeOC ₆ H ₄ CH ₂ -N H	(80)	256
TsNHMe	THF, rt, 3 h	PhCH ₂ CH ₂ NMeTs	(58)	230ь
TsNHBoc	THF, rt, 3 h	PhCH ₂ CH ₂ NBoc Ts	(97)	230b
TsNHMe	THF, rt, 3 h	NMeTs C≡CH	(80)	230b
TsNHMe	THF, rt, 3 h	Br	(58)	230b
DEAD	THF, rt, 1 h	$Et_{2}N(CH_{2})_{4} \xrightarrow{N}_{H} \xrightarrow{CO_{2}Et}_{H} + \underbrace{Et}_{N+} \xrightarrow{Et}_{N+}$	(—)	256
		(20) BocNH		
DIAD	÷	$B_{OC} \xrightarrow{(CH_2)_n}_{K} + \underbrace{(CH_2)_n}_{R} + \underbrace{(CH_2)_n}_{R}$		846
		+ $\begin{bmatrix} BocNH \\ RHNOC \\ III \\ i-PrO_2C \\ N-CH_2(CH_2)_{a} \\ NH \\ N-CH_2(CH_2)_{a} \\ NH \\ N$	Вос	
	Nitrogen Compound $ \int_{C} \int_{$	Nitrogen CompoundConditions	Nitrogen CompoundConditionsProduct(s) and Yield(s) (%) $f = f^{H}_{0} OCH_{p}Ph$ $f = f^{H}_{0} OCH_{p}Ph$ $f = f^{H}_{0} OCH_{p}Ph$ $f = f^{H}_{0} OCH_{p}Ph$ THF, rt $f = f^{H}_{0} OCH_{p}Ph$ BoeNHOCH,PhTHF, rt $f = f^{H}_{0} OCH_{p}Ph$ AcNHOCH,PhTHF, rt $O(CH_{2})hNHBoc$ DEADTHF, 1 h, rt $n \in C_{0}Bt$ "" $CO_{2}Bt$ """TSNHMeTHF, rt, 3 hTSNHMeTHF, rt, 3 hTSNHMeTHF, rt, 3 hDEADTHF, rt, 1 hEga(CH_{2})A, N_{M} CO_{2}Bt""""DEADTHF, rt, 1 hBocNHCO_{2}BtDEADTHF, rt, 1 hBocNH $CO_{2}Bt$ DEADTHF, rt, 1 hBocNH $CH_{2}O_{2}hC_{2}h_{1} + h_{2}h_{1}h_{1}h_{1}h_{1}h_{1}h_{1}h_{1}h_{1$	Nitrogen CompoundConditionsProduct(s) and Yield(s) (%) $f_{i} = f_{i} = f_$

TABLE XVIII. CARBON-NITROGEN BOND FORMATION, GENERAL (Continued)

Alcohol	Nitrogen Compound	Nitrogen Compound Conditions			Product(s) and Yield(s) (%)			
			R	n	% I	% II	% III	% IV
			н	1	0	34.2	7.2	25.2
			Me	1	0	38.3	10.0	14.9
			n-Bu	1	0	47.6	15.6	0
			PhCH ₂	1	23.1	36.4	0	12.7
			EtO ₂ C(Me)CH	1	0	60.8	1.4	5.7
			Me	2	43.2	0	0	33.1
			n-Bu	2	10.5	0	22.9	25.5
			PhCH ₂	2	37.6	0	8.1	29.4
			EtO2C(Me)CH	2	50.5	0	3.1	32.8
			н	3	0	0	30.6	21.8
			Me	3	0	0	25.9	28.3
			n-Bu	3	0	0	22.0	38.0
			EtO ₂ C(Me)CH	3	0	0	24.8	32.3
Ŷ			Ŷ					
N			N					
HNNN		Dioxane,	NN				(33) 847
HO-1.0		38 h, rt	20					
но			но					
			(CH ₂)2NM	e ₂			
N (CH2)2INMe2	DEAD		H N-CO.	Ft				(46) 848
н он			1					
			EtO ₂ C ^{-NH}					
			+ (N)	</td <td>CH₂)₂NN</td> <td>le₂</td> <td></td> <td>(5)</td>	CH ₂) ₂ NN	le ₂		(5)
			EtO N'	N-C	O ₂ Et			
H			H					
rt ³ × ^{Me}		THF, 4 days,	X Me				,	
N Me	_	rt, BF ₃ -	-N Me				(24) 223
CO ₂ Me		Et ₂ O	CO ₂ Me					
11			H ~ H		2			
ОН	DEAD	THF, rt, 1 h		°CO Et	2Et		(69) 256
		C ₆ H ₆ or THF,					- Star	Carl Carl
PhCH2-N OH	—	HBF ₄ or	PhCH ₂ -N-				(40-	50) 222
н		HBr						
			R ¹					
R ¹			\sim	R ²				
OH SOH	DEAD	THE 200 1 h						848
N R ²	DEAD	IHF 20, I II	-N -N	N-C	O ₂ Et			040
н			EtO					
			$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{M}\mathbf{e}$				(28)
			$\mathbf{R}^2 = \mathbf{P}\mathbf{h}, \mathbf{R}^2 =$	Me			(34)
			$\mathbf{R}^{1} = \mathbf{M}\mathbf{e}, \mathbf{R}^{2} =$	- CH	2CH2NM	Me ₂	(—)
			DI IL III			10	1	

TABLE XVIII. CARBON-NITROGEN BOND FORMATION, GENERAL (Continued)

Alcohol	Nitrogen Compound	Conditions	Product(s) and Yield(s) (%)		Refs.
CH2OCH2OMe		THF	CH2OCH2OMe	(60)	849
OH O2CPh	TsNHMe	THF	N(Me)Ts	(48)	840
	CF ₃ SO ₂ NHMe	THF	N(Me)SO ₂ CF ₃	(86)	840
	CF ₃ SO ₂ NHPh	THF	N(Ph)SO ₂ CF ₃	(86)	840
	TsNHPh	THF	N(Ph)Ts O ₂ CPh	(65)	840
$HO - C \equiv C - OSiMe_2Bu-t$		THF, 22°, 18–24 h	$N \rightarrow N \rightarrow 0$ MeO Me	(61)	850, 85
			+ N^{-N} $N = 0$ Me0 Me	(35)	
	DEAD	THF, 1 hrt -	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	(86)	256
PhCH ₂ O OH		-		(—)	852
	-	R THF, rt, 10 h		2	26
X			Y R Yield (9 H ₂ H Me 64 H ₂ H PhCH ₂ 55	%)	
14			HHPhCH248H2Hallyl37HHallyl29HMe2NCH2NHPhCH255HMe2NCH2NHallyl52		
BocNH	CbzNHOCH ₂ Ph	Bo THF, rt, 5 h	N ^{-Cbz}	5-80) 8	53

TABLE XVIII. CARBON-NITROGEN BOND FORMATION, GENERAL (Continued)

600

-

TABLE XVIII. CARBON-NITROGEN BOND FORMATION, GENERAL (Continued)

	Alcohol	Nitrogen Compound	Conditions	Product(s) and Yield(s) (%)		Refs.
C ₂₂ CbzNH	HO H H H H H H H H H H H H H H H H H H		THF	Cbz N H Me Ph H CO ₂ Me	(—)	818
C ₂₃	H_{HO}^{O} R^2 B_{N} R^2 H_{N}^{O} R^2 R		THF, rt, 2 h	R^1 N N R^2 R^n N		857
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
С ₂₄ ВпО- С ₂₆	NHBn OBn	_	THF, rt	BnONBn BnO	(95)	858
MeO Me Me	OAc OBn OAc OH HOAc	-	÷	MeO MeO MeO	(61)	224
HO	L CaH17	DEAD	THF, 1 h, rt	EtO ₂ C ^{-N} N CO ₂ Et	(15)	256
HO		DEAD	THF, 1 h, rt	EtO ₂ C ^{-N} N CO ₂ Et	(20)	256
C ₃₀ (4-MeO	C6H4)3CNH(CH2)8OH		THF, 48 h	$(4-MeOC_6H_4)_3CNH(CH_2)_8 Cl$	(65)	859

ŝ

t-BuMe2SiO

(100) 256

C₃₃

Alcohol	Sulfur Nucleophile	Conditions	Product(s) and Yield	(s) (%)	Refs.
С, Сн20н	$Zn(S_2CNMe_2)_2$	Toluene, 0°	CH ₂ S ₂ CNMe ₂	(85)	860
	MeCOSH	THF, 0°, 15 min	SCOMe Me CO ₂ H (40%) 68% ee		233
С	EtCS ₂ H	THF, 0°, 0.5 h	S2CEt	(61)	861
$R^{1} - (CH_{2})_{n}OH$ $n = 0-2$ $R^{1} = Me, H$ $R^{2} = Ph$	NHR ²	THF, (<i>n</i> -Bu) ₃ P, – 78° to 0°	R ¹ (CH ₂) _n S	NR ² (50-80)	248, 24
но	Ph NEt ₂	÷.,	O S OH	(—)	250
ОН	EtCS ₂ H	THF, 0°, 0.5 h	S2CEt	(98)	861
Me ₂ NCH ₂ CH ₂ OH	EtCS ₂ H	THF, 0°, 2 h	Me ₂ NCH ₂ CH ₂ S ₂ CEt	(29)	861
б Снгон	EtCS ₂ H	THF, 0°, 2 h	CH ₂ S ₂ CEt	(94)	861

TABLE XIX. FORMATION OF CARBON-SULFUR BONDS

	Alcohol	Sulfur Nucleophile	Conditions	Product(s) and Yield(s) (%	6)	Refs.
он				MeCOS		
Me CO2Et		MeCOSH	÷	CO ₂ Et	(—)	232
ОН				S ₂ CNMe ₂		
		Zn(S2CNMe2)	Toluene, 0°	. Las	(80)	860
Me ⁻ CO ₂ Et				Me ^c CO ₂ Et		
Ŷ				Ŷ		
(EtO)2P R		PhSH	C.H., rt. 48 h	(EtO) ₂ P_R	(50-55)	246
I I			00, 10, 11, 10 11	SPh	(00 00)	- 17
On				$R = H. Me. Et. n-Pr. n-C_sH_{11}$		
C.H.OH		EtCS.H	THE 0º 15 b	CHSCE	(62)	861
n-C ₅ H ₁₁ OH		EtCS ₂ H	THF, 0°, 2 h	$n-C_3H_{11}S_2CEt$	(95)	861
-						
Br(CH ₂) ₅ CH ₂ C	ЭН	$Zn(S_2CNMe_2)_2$	Toluene, 0°	Br(CH ₂) ₅ CH ₂ S ₂ CNMe ₂	(89)	860
X				X		
		$Zn(S_2CNMe_2)_2$	Toluene, 0°		(87)	860
CH ₂ OH				CH2S2CNMe2		
OH						
				o s	()	250
$\sim \gamma$		Ph N NEt2	-	DEL NE OH	()	250
OH		H	THE OF LCL		(14)	0(1
C ₆ H ₁₁ OH		EICS ₂ H	1HF, 0 [°] , 1.5 h	C ₆ H ₁₁ S ₂ CET	(14)	801
PhCH ₂ OH		Zn(S ₂ CNMe ₂) ₂	Toluene, 0°	PhCH ₂ S ₂ CNMe ₂	(92)	860
PhCH ₂ OH		MeCOSH	_	PhCH ₂ SCOMe	(—)	231
PhCH ₂ OH		EtCS ₂ H	THF, 0°, 0.5 h	PhCH ₂ S ₂ CEt	(82)	861
		i-BuCS ₂ H	THF, 0°, 0.5 h	PhCH ₂ S ₂ CMe PhCH ₂ S ₂ CBu- <i>i</i>	(48)	861
t-BuO2CNH(C	H ₂)"OH	PhCOSH	—	<i>t</i> -BuO ₂ CNH(CH ₂) _n SCOPh	(50-70)	236
n = 2 - 8	8					
CH ₂ OH				CH ₂ SOCMe		
HN		MeCOSH	THF/DMF, 4 h, 20°	HN	(74)	862
0 N CO	Me			O N COMe		
H				H CH-SOCM-		
CH ₂ OH						
HN		MeCOSH	THF/DMF, 4 h, 20°	HN	(83)	862
ON NCO	2Me			O N CO2Me		
H				н		
4-O2NC6H4CH2	CH ₂ OH	MeCOSH	THF, rt, overnight	4-O2NC6H4CH2CH2SOCMe	()	863
ŅН		MeCOSH	THE 0º 15 min	SCOMe		233
Ph CO.H		месозн	Inr, 0, 15 min	Ph CO ₂ H		200
				(48%) 85% ee retention		
011		O S		o s ^{Ph}		
Ph		Ph N NEt2	-	J.J.	()	250
		Н		Ph N NEt ₂		
				o s OPh		
PhO		Ph N NEt2	.	Ph N NEt	(—)	250
		н		THE IN INER		

TABLE XIX. FORMATION OF CARBON-SULFUR BONDS (Continued)

Alcohol	Sulfur Nucleophile	Conditions	Product(s) and Yield(s) (%)		Refs.
Ph OH CONH2	MeCOSH	-		(—)	237
	MeCOSH	Dioxane, rt, 15 h		(64)	241
OH EtO ₂ C CO ₂ Et	MeCOSH	-	EtO ₂ C CO ₂ Et	(92)	232
он Х	MeCOSH	-	SCOMe	(98)	231
C ₉ OH Ph CO ₂ Me	MeCOSH	THF, 0°	SCOMe Ph CO ₂ Me 69% ee	(78)	232
CCC CH2OH	Zn(S ₂ CNMe ₂) ₂	THF, rt	CH ₂ S ₂ CNMe ₂	(77)	527
PhCH ₂ CO ₂ H	MeCOSH	THF	PhCH ₂ CO ₂ H	(45)	233
Ph CH ₂ OH	"	.,	Ph CH ₂ SCOMe	(89)	231
	Zn(S2CNMe2)2	Toluene, 0°	Ph CH ₂ S ₂ CNMe ₂ OH	(95)	860
он Рh — ОН		-	o s ph ph N NEt ₂	()	250
$\begin{array}{c} H \\ t-BuO_2C \\ CD_2OH \end{array} CO_2Me \\ CD_2OH \end{array}$	4-MeC ₆ H ₄ CH ₂ SH	Toluene, rt	$t-BuO_2C$ N $CD_2SCH_2C_6H_4Me-4$	(66)	864
C ₁₀ Ph CO ₂ Me	MeCOSH	-	Ph CO ₂ Me SCOMe	()	233
Pr-i	$Zn(S_2CNMe_2)_2$	Toluene, rt	Me ₂ NCS ₂	(86)	251
HO Pr-i	Zn(S ₂ CNMe ₂) ₂	Toluene, 0°	Pr-i S ₂ CNMe ₂	(86)	860
HO	MeCOSH	THF, rt, 2 h	MeCOS	(83)	238
EtO ₂ C OH	MeCOSH	2	EtO ₂ C SCOMe	(—)	865
HO NHCO ₂ pNB	O N CO2PNB	-	NHCO ₂ pNB	(44)	255

TABLE XIX. FORMATION OF CARBON-SULFUR BONDS (Continued)

-

Alcohol	Sulfur Nucleophile	Conditions	Product(s) and Yield(s) (%)		Refs.
	P. 1000-0				
	MeCOSH	THF, rt, 2 h	MeCOS	(91)	241
HO HO HO	MeCOSH	-	ArSa	(73)	240
CO ₂ Me CO ₂ Bu-t		THF, 0°, 1 h	CO ₂ Me CO ₂ Bu-t	(95)	254
HO	MeCOSH	THF, 2 h	MeCOS	(—)	238
		"	Mecos OMe	(54)	238
	Zn(S ₂ CNMe ₂) ₂	Toluene, 0°		(92)	860
$\frac{HO}{HO} \underbrace{N}_{R^{1}}^{CO_{2}pNB} \underbrace{R^{1}}_{R^{1}} \frac{R^{2}}{CO_{2}CH_{2}CH=CH_{2}}$	MeCOSH	THF, 1 h, rt	MeCOS. $N^{-CO_{2}pNB}$ $(-R^{2})$ R^{1}	(85)	98
$CO_2CH_2CH=CH_2 H$ $H CO_2Me$ $CO_2Me H$ $H CH_2SMe$ H_2NOC $N S$			H ₂ NOC		
	MeCOSH	THF	MeCOS	(84)	241
	MeCOSH	DMF, rt	MeCOS OH OH	(43)	866

Alcohol	Sulfur Nucleophile	Conditions	Product(s) and Yield(s) (%)	<u></u>	Refs.
			+ HO HO OH OH	(21)	
			+ MeCOS HO HO HO HO HO HO HO HO HO HO	(21)	
но	MeCOSH	THF, 2 h	MeCOS MeCOS	le (64)	238
и-Рт ОН	MeCOSH	DME, 0°	i-Pr	(82)	112
HO i-PT S NHAr	-	<u> </u>	i-Pr S NAr	(100)	249
HO Pr-n i-Pr S NHAr	-	-	i-Pr S NAr	(100)	249
R NHBn	\div	THF, rt, 3.5-10 h	$BnN < S \sim R + S < N \sim R$	R	867
S			I II II R % I % II Ph 47 23 Me 42 32 Ft 40 23		
<i>n</i> -C ₁₂ H ₂₅ OH	EtCS ₂ H	THF, 0°, 1.5 h	$n-C_{12}H_{23}S_2CEt$	(88)	861
C ₁₄ TsO	MeCOSH	_	Tso SCOMe	(—)	865
OH CO2Me	MeCOSH	THF, 12 h, 0-23°	SCOMe	(33)	868
C ₁₅ OH	MeCOSH	THF, 12 h, 0-23°	SCOME	(90)	868

NMe₂

TABLE XIX. FORMATION OF CARBON-SULFUR BONDS (Continued)

616

Alcohol	Sulfur Nucleophile	Conditions	Product(s) and Yield(s) (%)	Refs.
MeO	MeCOSH	THF, 0°	MeO NMe (89) 870
HO' OH WE	MeCOSH	THF, 0°	MeCOS OH (-	·) 870
HO OH R				
$R = H, NHCO_2Me$	MeCOSH	-	но он (45-60) 871, 872
V Lo			V La	
HOHO	MeCOSH	DMF, rt	MeCOS OH (54	9) 866
но			но	
C_{20} <i>t-BuMe</i> ₂ SiO H H O O CO ₂ CH ₂ CH=CH=CH	H HS N-N Ha HS Me	THF, 1 min	$ \begin{array}{c} H \\ H \\ H \\ N \\ H \\ CO_2CH_2CH=CH_2 \end{array} $ (9))) 252
Ph N OH Me N (CH ₂) ₃ NMe ₂	MeCOSH	THF, 2 h, 0°	$\begin{array}{c} Ph \\ & \\ N \\ & \\ Me \\ HO_{1} \end{array} $ $\begin{array}{c} SCOMe \\ (CH_{2})_{3}NMe_{2} \\ HO_{2} \end{array} $ (8)	1) 873
N N N N N N N N N N N N N N N N N N N	MeCOSH	THF, 0°		-) 870

TABLE XIX. FORMATION OF CARBON-SULFUR BONDS (Continued)

Alcohol	Sulfur Nucleophile	Conditions	Product(s) and Yield(s) (%)	Refs.
HO HO HO HO HO HO HO HO HO HO HO HO HO H	MeCOSH	DMF, rt	MeCOS HO HO HO HO HO HO HO HO O HO (48)	866
$C_{21} \qquad (CH_2)_n OH \qquad CO_2 \qquad n = 0-3$	Me MeCOSH	rt, 2 h	$(CH_2)_n SCOMe$ $(80-84)$ $n = 0-3$	239
он но С ₅ н ₁₁ -л	MeCOSH	THF, 0°–rt, 1.5 h	$ \begin{array}{c} $	874
OH OH C ₅ H ₁₁ -n	MeCOSH	THF, 0°–rt, 1.5 h	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	874
	MeCOSH	THF, 0°-rt, 1.5 h	$MeCOS \longrightarrow C_{5}H_{11}-n$ $Me_{2}NCS_{2}$ (23)	874
BnO OBn	Zn(S ₂ CNMe ₂) ₂	Toluene, 0°	BnO OBn (91)	860
HO, N CO ₂ CH ₂ C ₆ H ₄ OMe- <i>p</i>	MeCOSH	THF, rt, 4 h	$MeCOS \xrightarrow{N} CO_2CH_2C_6H_4OMe-p (99)$ CO_2pNB MeO,	469
HO	MeCOSH	THF, 0°	MeCOS ()	870
OH OH OBase	MeCOSH	THF, 0°	MeCOS	417
OBz			OBz	

TABLE XIX. FORMATION OF CARBON-SULFUR BONDS (Continued)

Alcohol	Sulfur Nucleophile	Conditions	Product(s) and Yield(s) (%)	Refs.
			Base = $\bigvee_{N}^{NHBz} \bigvee_{N}^{O} (69) \qquad \bigvee_{N}^{O} (78)$ $\downarrow_{N}^{NHBz} \qquad O$ $\downarrow_{N}^{NHBz} \qquad O$ $\downarrow_{N}^{NHBz} \qquad O$ $\downarrow_{N}^{NHBz} \qquad O$ $\downarrow_{N}^{NHBz} \qquad O$ $\downarrow_{N}^{NHBz} \qquad O$ $\downarrow_{N}^{O} (87) \qquad \bigvee_{N}^{N} (73)$	
C ₂₅ Ph(CH ₂) ₈ OH CO ₂ Me	MeCOSH	Toluene, (<i>n</i> -Bu) ₃ P, rt, 18 h	Ph(CH ₂) ₈ SCOMe CO_2Me (15) Ph(CH ₂) ₈ (15) Ph(CH ₂) ₈	875
HOOSiMe2Bu	PhCOSH	_	+ OMe (65) PhCOS OH (56)	876
	RSH	_		
П С ₂₈	Zn(S2CNMe2)2 EtCS2H	Toluene, 0° THF, 0°, 0.5 h	I R = NCS (52) I R = PhS (60) I R = MeCOS (94) I R = Me2NCS2 (87) I R = EtCS2 (33)	245 245 231 860 861
BnOOMe BnO OBn	Zn(S2CNMe2)2	Toluene, 0°	BnOOMe (90) BnO OBn	860
BnO HO BnO OBn	Zn(S2CNMe2)2	Toluene, 0°	BnO Me ₂ NCS ₂ OMe (78) BnO OBn	860
BnO HO BnO OBn	Zn(S2CNMe2)2	Toluene, 0°	Me ₂ NCS ₂	860

TABLE XIX. FORMATION OF CARBON-SULFUR BONDS (Continued)

TABLE XIX. FORMATION OF CARBON-SULFUR BONDS (Continued)

	Alcohol	Halide Source	Conditions	Product(s) and Yield(s) (%)	_	Refs
C ₅	OH					
		ZnX ₂	THF, rt, 30 min	∇		262
c	6				5%) 6%) 2%)	
6	•	\land		•		
	Слон	H CI	5 min		(55)	258
	C ₆ H ₁₁ OH	MeI	MTD, THF,	C ₆ H ₁₁ I	(74)	264
		MeBr ZnCl ₂	THF, rt, 2 h	C ₆ H ₁₁ Br C ₆ H ₁₁ Cl	(71) (90)	264 262
6	O O O O H	EtBr	THF, 20°, 2 h	$\int_{-0}^{Me} Br$	(77)	877
C,	4-O2NC4H4CH2OH	Pyridinium hydrochloride or MeONH ₂ -HCl	THF, 0°, 5 min	4-O ₂ NC ₆ H ₄ CH ₂ Cl	(95)	258
	PhCH ₂ OH	Pyridinium hydrobromide MeI	" MTD, THF,	4-O2NC6H4CH2Br PhCH2I	(84) (92)	258 264
		MeBr LiBr	,, " THF, 0°	PhCH₂Br "	(91) (60)	264 263
	HO	ZnBr ₂	-	Br	(65)	878
		MeI	-	I R	(64)	879
C ₈	4-CIC ₆ H ₄ CH ₂ CH ₂ OH	Pyridinium hydrochloride	THF, 0°,	4-CIC ₆ H ₄ CH ₂ CH ₂ CI	(96)	258
	PhCH ₂ CH ₂ OH	ZnCl ₂ LiBr	THF, 0.5 h, rt	PhCH ₂ CH ₂ Cl PhCH ₂ CH ₂ Cl	(80)	262
	HO_C≡C	LiBr	THF, 0°	Br_C≡C	(93)	263
	ОН	LiBr	THF, rt	Br	(80)	263
	он	MeI	MTD, THF, 6 h, rt		(65)	264
Cg	CH ₂ OH	ZnI ₂	THF, rt		(88)	527
	OT OH	PhCH₂Br	-			10

TABLE XX. CARBON-HALOGEN BOND FORMATION

Halide Source Conditions Product(s) and Yield(s) (%)	Re
CH ₂ I	
MeI $C_{o}H_{o}$, rt, 1 h Me HO OMe	53) 880
MeBr MTD, THF, Me Me Me Me	75) 264
MeBr MTD, THF, Br 6 h, rt Me	88) 264
MeI " Method	88) 264
ZnI ₂ Toluene "	77) 251
ZnCl ₂ " Me	73) 251
Pyridinium hydrochloride THE 0° Cl(CH ₂) ₂ CO ₂ CH ₂ C ₂ H ₂ NO ₂ -4	82) 258
Pyridinium hydrobromide "Br(CH ₂) ₃ CO ₂ CH ₂ C ₆ H ₄ NO ₂ -4	76) 258
MeI THF, 0° to rt $V_{N} CO_{2}Me$ (0) 254
MeI THF, rt, 2.5 h $($	1) 881
MeI $ (MeO)_2CH$ O O $($	-) 630
MeI Toluene, reflux	'0) 10
PhCH ₂ Br Toluene, reflux (7) (11)	10
PhCH ₂ Br Toluene, reflux (7) (11) $+ \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} + Br \int_{0}^{0} \int_{0}^{0$	

TABLE XX. CARBON-HALOGEN BOND FORMATION (Continued)

Alcohol	Halide Source	Conditions	Product(s) and Yield(s) (%)		Refs
HOCH ₂ BnO HO OMe	MeI	THF, rt, 19 h	ICH ₂ BnO HO OMe	(74)	615
PhCH ₂ CH ₂ \longrightarrow Sn(Bu-n) ₃ OH	CH ₂ Cl ₂	CH ₂ Cl ₂ , rt, 24 h	BnO PhCH ₂ CH ₂ $Sn(Bu-n)_3$ Cl	(65)	259
	MeI	C ₆ H ₆ , rt, 48 h	PhCH ₂ CH ₂ Sn(Bu-n) ₃	(60)	259
$\begin{array}{c} n - C_9 H_{19} \\ & \searrow \\ OH \end{array}$	MeI	C ₆ H ₆ , rt, 48 h	$\stackrel{n-C_9H_{19}}{\underset{I}{\bigvee}} Sn(Bu-n)_3$	(50)	259
r-BuMe ₂ Sio 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MeI	-		(—)	630
BnO BnO BnO	ZnI ₂	30°	BnO BnO BnO	(—)	887
HO H	LiX	THF, rt	$X \xrightarrow{He} H$ $\frac{X \xrightarrow{Yield (\%)}}{F = 51}$		263
Me Bu-i	ZnCl ₂	THF, rt, 2 h	Cl 84 Br 96 I 62-78 Me	(92)	262
HO H HO OSiPh ₂ Bu-t	ZnCl ₂	THF, rt, 20 min	CI	(90)	262
HO N. OBn	MeBr	THE/C.H.	Br. OBn	(57)	616

TABLE XX. CARBON-HALOGEN BOND FORMATION (Continued)

8. Acknowledgments

I wish to thank Dr. Edward Grabowski for serving as a catalyst for this chapter, and for his many helpful comments and discussions.

References

- 1. O. Mitsunobu, M. Yamada, and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1967, **40**, 935.
- 2. O. Mitsunobu and M. Yamada, Bull. Chem. Soc. Jpn., 1967, 40, 2380.
- 3. O. Mitsunobu and M. Eguchi, Bull. Chem. Soc. Jpn., 1971, 44, 3427.
- (a) W. A. Slusarchyk, T. Dejneka, J. Gougoutas, W. H. Koster, D. R. Kronenthal, M. Malley, M. G. Perri, F. L. Routh, J. E. Sundeen, E. R. Weaver, and R. Zahler, Tetrahedron Lett., 1986, 27, 2789. (b) R. S. Subramanian and K. K. Balasubramanian, Synth. Commun., 1989, 19, 1255. (c) R. S. Subramanian and K. K. Balasubramanian, Tetrahedron Lett., 1989, 30, 2297. (d) H. Brunner, P. Hankofer, and B. Treittinger, Chem. Ber., 1990, 1029.
- 5. O. Mitsunobu, Synthesis, 1981, 1.
- (a) B. R. Castro, Org. Reactions, 1983, 29, 1. (b) D. Crich, H. Dyker, and R. J. Harris, J. Org. Chem., 1989, 54, 257.
- 7. D. L. Hughes, R. A. Reamer, J. J. Bergan, and E. J. J. Grabowski, J. Am. Chem. Soc., 1988, **110**, 6487.
- 8. E. Brunn and R. Huisgen, Angew. Chem. Int. Ed. Engl., 1981, 8, 513.
- 9. R. A. Reamer, private communication.
- 10. H. Kunz and P. Schmidt, Justus Liebigs Ann. Chem., 1982, 1245.
- H. Ohmori, S. Naki, H. Miyasaka, and M. Masui, Chem. Pharm. Bull., 1982, **30**, 4192.
- 12. R. D. Guthrie and I. D. Jenkins, Aust. J. Chem., 1982, 35, 767.
- 13. M. von Itzstein and I. D. Jenkins, Aust. J. Chem., 1983, 36, 557.
- 14. M. von Itzstein and I. D. Jenkins, J. Chem. Soc., Perkin Trans. 1, 1986, 437.
- 15. E. Grochowski, B. D. Hilton, R. J. Kupper, and C. J. Michejda, J. Am. Chem. Soc., 1982, **104**, 6876.
- (a) M. Varasi, K. A. M. Walker, and M. L. Maddox, J. Org. Chem., 1987,
 52, 4235. (b) A. Pautard-Cooper and S. A. Evans, Jr., J. Org. Chem.,
 1989, 54, 2485. (c) D. Camp and I. D. Jenkins, J. Org. Chem., 1989, 54,
 3045. (d) D. Camp and I. D. Jenkins, J. Org. Chem., 1989, 54, 3049.
- 17. D. H. Shih, F. Baker, L. Cama, and B. G. Christensen, Heterocycles, 1984, **21**, 29.
- 18. I. Fleming and J. D. Kilburn, J. Chem. Soc., Chem. Commun., 1986, 1198.
- 19. T. Chiba, M. Nagatsuma, and T. Nakai, Chem. Lett., 1985, 1343.
- 20. A. Yoshida, T. Hayashi, N. Takeda, S. Oida, and E. Ohki, Chem. Pharm. Bull., 1981, **29**, 2899.
- 21. G. Cainelli, M. Contento, D. Giacomini, and M. Panunzio, Tetrahedron Lett., 1985, **26**, 937.
- 22. D. J. Hart, and D.-C. Ha, Tetrahedron Lett., 1985, 26, 5493.
- D. G. Melillo, I. Shinkai, T. Liu, K. Ryan, and M. Sletzinger, Tetrahedron Lett., 1980, 21, 2783.
- 24. I. Shinkai, T. Liu, R. A. Reamer, and M. Sletzinger, Tetrahedron Lett., 1982, 23, 4899.
- 25. G. I. Georg, J. Kant, and H. S. Gill, J. Am. Chem. Soc., 1987, 109, 1129.
- E. Perrone, M. Alpegiani, A. Bedeschi, F. Giudici, F. Zarini, G. Franceschi, C. Della Bruna, D. Jabes, and G. Meinardi, J. Antibiotics, 1987, 40, 1636.
- 27. S. M. Schmitt, T. N. Salzmann, D. H. Shih, and B. G. Christensen, J. Antibiotics, 1988, **41**, 780.
- 28. H. Maruyama and T. Hiraoka, J. Org. Chem., 1986, 51, 399.
- D. M. Tschaen, L. M. Fuentes, J. E. Lynch, W. L. Laswell, R. P. Volante, and I. Shinkai, Tetrahedron Lett., 1988, 29, 2779.
- 30. G. I. Georg and H. S. Gill, J. Chem. Soc., Chem. Commun., 1985, 1433.
- D. F. Corbett, S. Coulton, and R. Southgate, J. Chem. Soc., Perkin Trans.
 1, 1982, 3011.
- 32. J. S. Prasad and L. S. Liebeskind, Tetrahedron Lett., 1988, 29, 4253.
- 33. P. J. Kocienski, S. D. A. Street, C. Yeates, and S. F. Campbell, J. Chem. Soc., Perkin Trans. 1, 1987, 2171.
- P. J. Kocienski, S. D. A. Street, C. Yeates, and S. F. Campbell, J. Chem. Soc., Perkin Trans. 1, 1987, 2183.
- M. Suzuki, T. Sugiyama, M. Watanabe, T. Murayama, and K. Yamashita, Agric. Biol. Chem., 1987, 51, 1121.
- 36. M. Vandewalle, J. Van der Eycken, W. Oppolzer, and C. Vullioud, Tetrahedron, 1986, **42**, 4035.
- M. L. Swain and R. W. Turner, J. Chem. Soc., Chem. Commun., 1981, 840.
- 38. D. Lesuisse and G. A. Berchtold, J. Org. Chem., 1985, 50, 888.
- 39. P. Schnurrenberger, E. Hungerbuhler, and D. Seebach, Justus Liebig Ann. Chem., 1987, 733.
- 40. M. Ando, S. Sayama, and K. Takase, J. Org. Chem., 1985, 50, 251.
- 41. R. D. Guthrie, R. W. Irvine, B. E. Davison, K. Henrick, and J. Trotter, J. Chem. Soc., Perkin Trans. 2, 1981, 468.
- 42. P. Schnurrenberger, E. Hungerbuhler, and D. Seebach, Tetrahedron Lett., 1984, **25**, 2209.
- 43. A. Dereault, I. Tranchepain, and J. C. Depezay, Synthesis, 1987, 491.
- 44. D. E. Ward, Can. J. Chem., 1987, 65, 2380.

- 45. J. W. Morzycki, Can. J. Chem., 1986, 64, 1536.
- 46. S. Kosuge, M. Hayashi, and N. Hamanaka, Tetrahedron Lett., 1982, 23, 4027.
- 47. L. K. P. Lam, I. A. Gair, and J. B. Jones, J. Org. Chem., 1988, 53, 1611.
- 48. T. Sugimura and L. A. Paguette, J. Am. Chem. Soc., 1987, 109, 3017.
- 49. T. Sugimura, and L. A. Paquette, J. Am. Chem. Soc., 1986, 108, 3841.
- 50. A. B. Smith, K. J. Hale, and R. A. Rivero, Tetrahedron Lett., 1986, **27**, 5813.
- 51. A. B. Smith and R. A. Rivero, J. Am. Chem. Soc., 1987, **109**, 1272.
- 52. S. Hanessian, S. P. Sahoo, and M. Botta, Tetrahedrn Lett., 1987, **28**, 1143.
- 53. W. C. Still, C. Gennari, J. A. Noguez, and D. A. Pearson, J. Am. Chem. Soc., 1984, **106**, 260.
- 54. E. M. Oltz, K. Nakanishi, B. Yagen, D. G. Corley, G. E. Rottinghaus, and M. S. Tempesta, Tetrahedron, 1986, **42**, 2615.
- 55. M. Gill and R. W. Rickards, Aust. J. Chem., 1981, 34, 2587.
- 56. C. Le Drian and A. E. Greene, J. Am. Chem. Soc., 1982, 104, 5473.
- 57. M. Isobe, Y. Ichikawa, D. Bai, and T. Goto, Tetrahedrn Lett., 1985, **26**, 5203.
- 58. M. Isobe, Y. Ichikawa, D. Bai, and T. Goto, Tetrahedron, 1986, 42, 2863.
- 59. Y. Koksal, P. Raddatz, and E. Winterfeldt, Justus Liebig Ann. Chem., 1984, 450.
- 60. Y. Tamaru, S. Kawamura, and Z. Yoshida, Tetrahedron Lett., 1985, **26**, 2885.
- Y. Tamaru, S. Kawamura, and Z. Yoshida, Tetrahedron Lett., 1984, 25, 1063.
- 62. S. Jarosz, J. Glodek, and A. Zamojski, Carbohyd. Res., 1987, 163, 289.
- 63. M. Aburatani, T. Takeuchi, and K. Mori, Agric. Biol. Chem., 1985, **49**, 3557.
- 64. B. L. Roy and P. Deslongchamps, Can. J. Chem., 1985, 63, 651.
- 65. K.-H. Marx, P. Raddatz, and E. Winterfeldt, Justus Liebig Ann. Chem., 1984, 474.
- 66. S. Okamoto, T. Shimazaki, Y. Kobayashi, and F. Sato, Tetrahedron Lett., 1987, **28**, 2033.
- 67. S. Okamoto, T. Shimazaki, Y. Kobayashi, and F. Sato, Tetrahedron Lett., 1987, **28**, 5849.
- 68. M. Wada, T. Shigehisa, and K. Akiba, Tetrahedron Lett., 1985, 26, 5191.
- 69. H. Masterlerz, J. Org. Chem., 1984, 49, 4092.
- 70. M. Kori, K. Itoh, and H. Sugihara, Chem. Pharm. Bull., 1987, 35, 2319.

- 71. M. Yamada, K. Tachibana, and T. Kuroda, Carbohyd. Res., 1983, **112**, 189.
- 72. D. M. Flanagan and M. M. Joullie, Heterocycles, 1987, 26, 2247.
- 73. K. L. Bhat, D. M. Flanagan, and M. M. Joullie, Synth. Commun., 1985, **15**, 587.
- 74. K. Barlos, M. Lampropoulou, V. Marmaras, D. Papaioannou, and S. Patrianakou, Justus Liebigs Ann. Chem., 1986, 1407.
- 75. M. Koreeda and I. A. George, J. Am. Chem. Soc., 1986, **108**, 8098.
- 76. A. B. Smith, B. D. Dorsey, M. Visnick, T. Maeda, and M. S. Malamas, J. Am. Chem. Soc., 1986, **108**, 3110.
- 77. M. C. Wani, D. H. Rector, and C. E. Cook, J. Org. Chem., 1987, 52, 3468.
- 78. G. L. Bundy, D. R. Morton, D. C. Peterson, E. E. Nishizawa, and W. L. Miller, J. Med. Chem., 1983, 26, 790.
- 79. Y. Masaki, K. Nagata, and K. Kaji, Chem. Lett., 1983, 1835.
- E. J. Corey, K. Nimura, Y. Konishi, S. Hashimoto, and Y. Hamada, Tetrahedron Lett., 1986, 27, 2199.
- H. Redlich, B. Schneider, R. W. Hoffmann, and K. J. Geueke, Justus Liebigs Ann. Chem., 1983, 393.
- M. Mori, T. Chuman, K. Kato, and K. Mori, Tetrahedron Lett., 1982, 23, 4593.
- 83. S. Achab and B. C. Das, J. Chem. Soc., Chem. Commun., 1983, 391.
- 84. G. A. Leyes and W. H. Okamura, J. Am. Chem. Soc., 1982, 104, 6099.
- S. Takano, C. Kasahara, and K. Ogasawara, Heterocycles, 1982, 19, 1443.
- A. Padwa, G. D. Kennedy, and M. W. Wannamaker, J. Org. Chem., 1985, 50, 5334.
- 87. C. Sato, S. Ikeda, H. Shirahama, and T. Matsumoto, Tetrahedron Lett., 1982, 23, 2099.
- J. Mulzer, L. Autenrieth-Ansorge, H. Kirstein, T. Matsuoka, and W. Munch, J. Org. Chem., 1987, 52, 3784.
- 89. M. Hayashida, N. Sakairi, and H. Kuzuhara, Carbohydr. Res., 1986, **154**, 115.
- 90. F. Mohamadi and W. C. Still, Tetrahedron Lett., 1986, 27, 893.
- 91. M. Nishizawa, K. Adachi, and Y. Hayashi, J. Chem. Soc., Chem. Commun., 1984, 1637.
- 92. G. Palmisano, B. Danieli, G. Lesma, and R. Riva, J. Chem. Soc., Perkin Trans. 1, 1985, 923.
- 93. M. Hubner, I. Fussel, and K. Ponsold, Pharmazie, 1984, 39, 462.
- 94. S. Takano and K. Shishido, Heterocycles, 1982, 19, 1439.

- 95. S. Takano and K. Shishido, Chem. Pharm. Bull., 1984, 32, 3892.
- 96. W. Adam, C. Babatsikos, and G. Cilento, Z. Naturforsch., 1984, 39B, 679.
- 97. T. Shibata, K. Iino, and Y. Sugimara, Heterocycles, 1986, 24, 1331.
- G. Emmer, P. Kneussel, J. Hildebrant, F. Turnowsky, A. Haselberger, A. Wenzel, and P. Stutz, J. Antibiotics, 1985, 38, 1371.
- 99. T. Sugiyama, A. Sato, and K. Yamashita, Agric. Biol. Chem., 1982, 46, 481.
- 100. W. R. Roush and T. A. Blizzard, J. Org. Chem., 1984, 49, 4332.
- 101. O. Mitsunobu, M. Ebina, and T. Ogihara, Chem. Lett., 1982, 373.
- 102. G. Majetich, J. Defauw, and C. Ringold, J. Org. Chem., 1988, 53, 50.
- 103. Y. Guindon, D. Delorme, C. K. Lau, and R. Zamboni, J. Org. Chem., 1988, **53**, 267.
- 104. Y. Guindon and D. Delorme, Can. J. Chem., 1987, 65, 1438.
- 105. T. Sugai and K. Mori, Synthesis, 1988, 19.
- 106. R. Ramage and A. M. MacLeod, Tetrahedron, 1986, **42**, 3251; J. Chem. Soc., Chem. Commun., 1984, 1008.
- 107. H. Suzuki, A. Tanaka, and K. Yamashita, Agric. Biol. Chem., 1987, **51**, 3369.
- 108. J. L. Pawlak and G. A. Berchtold, J. Org. Chem., 1987, 52, 1765.
- 109. M. Tanaka, K. Tomioka, and K. Koga, Tetrahedron Lett., 1985, 26, 3035.
- 110. H. Hiraoka, K. Furuta, N. Ikeda, and H. Yamamoto, Bull. Chem. Soc., Jpn., 1984, **57**, 2777.
- 111. M. Dorsch, V. Jager, and W. Sponlein, Angew. Chem., Int. Ed. Engl. 1984, **23**, 798.
- 112. E. J. Corey and T. A. Engler, Tetrahedron Lett., 1984, 25, 149.
- 113. J. A. Marshall, M. J. Coghlan, and M. Watanabe, J. Org. Chem., 1984, **49**, 747.
- 114. J. K. Whitesell, M. Fisher, and P. Jardine, J. Org. Chem., 1983, 48, 1556.
- 115. J. C. Fiaud and L. Aribi-Zouioveche, Tetrahedron Lett., 1982, 23, 5279.
- 116. J. A. Marshall and K. E. Flynn, J. Am. Chem. Soc., 1982, **104**, 7430.
- 117. M. Ishihara, T. Tsuneya, H. Shiota, and M. Shiga, J. Org. Chem., 1986, **51**, 491.
- 118. P. A. Grieco, R. E. Zelle, R. Lis, and J. Finn, J. Am. Chem. Soc., 1983, **105**, 1403; 1986, **108**, 5908.
- 119. M. Ando, H. Yamaoka, and K. Takase, Chem. Lett., 1982, 501.
- 120. F. Kido, Y. Noda, and A. Yoshikoshi, J. Chem. Soc., Chem. Commun., 1982, 1209; Tetrahedron, 1987, **43**, 5467.
- 121. S. D. Burke and G. J. Pacofsky, Tetrahedron Lett., 1986, 27, 3345.
- 122. S. D. Burke, G. J. Pacofsky, and A. D. Piscopio, Tetrahedron Lett., 1986,

27, 445.

- 123. I. Dyong, J. Weigand, and J. Thiem, Justus Liebigs Ann. Chem., 1986, 577.
- 124. (a) S. Sakamoto, T. Tsuchiya, S. Umezawa, and H. Umezawa, Bull. Chem. Soc., Jpn., 1987, 60, 1481. (b) V. Farina, Tetrahedron Lett., 1989, 30, 6645. (c) R. S. Subramanian and K. K. Balasubramanian, Tetrahedron Lett., 1990, 31, 2201.
- 125. R. Pellegata, I. Dosi, M. Villa, G. Lesma, and G. Palmisano, Tetrahedron, 1985, **41**, 5607.
- 126. L. G. Lee and G. M. Whitesides, J. Org. Chem., 1986, 51, 25.
- 127. H. Akita, A. Furuichi, H. Koshiji, K. Horikoshi, and T. Oishi, Chem. Pharm. Bull., 1984, **32**, 1342.
- 128. H. Akita, A. Furuichi, H. Koshiji, K. Horikoshi, and T. Oishi, Chem. Pharm. Bull., 1983, **31**, 4384.
- 129. T. Oritani, M. Ichimura, Y. Hanyu, and K. Yamashita, Agric. Biol. Chem., 1983, **47**, 2613.
- 130. T. Oritani, K. Yamashita, and C. Kabuto, J. Org. Chem., 1984, 49, 3689.
- 131. G. Grynkiewicz, Rocz. Chem., 1976, 50, 1449.
- 132. I. Grochowski, Bull. Acad. Pol. Sci., 1980, 28, 489.
- 133. A. M. Pautard and S. A. Evans, J. Org. Chem., 1988, 53, 2300.
- 134. B. Dayal, D. N. Greeley, T. H. Williams, G. S. Tint, and G. Salen, J. Lipid Res., 1984, 25, 646.
- 135. P. Welzel, H. Stein, and T. Milkova, Justus Liebigs Ann. Chem., 1982, 2119.
- 136. P. Welzel and H. Stein, Tetrahedron Lett., 1981, 22, 3385.
- 137. K. Weinges, S. Haresma, and W. Maurer, Carbohydr. Res., 1987, **164**, 453.
- 138. I. D. Jenkins and M. B. Goren, Chem. Phys. Lipids, 1986, 41, 225.
- 139. S. Bottle and I. D. Jenkins, Chem. Soc., Chem. Commun., 1984, 385.
- 140. M. Georges, D. Mackay, and B. Fraser-Reid, Can. J. Chem., 1984, **62**, 1539.
- 141. K. Weinges and D. Brunner, Justus Liebigs Ann. Chem., 1986, 54.
- 142. J. A. Marshall, R. C. Andrews, and L. Lebioda, J. Org. Chem., 1987, **52**, 2381.
- 143. S. E. Ramer, R. N. Moore, and J. C. Vederas, Can. J. Chem., 1986, **64**, 706.
- 144. J. S. Bajwa and M. J. Miller, J. Org. Chem., 1983, 48, 1114.
- 145. J. Mulzer, G. Bruntrup, and A. Chucholowski, Angew. Chem., Int. Ed. Engl., 1979, **18**, 622.

- 146. W. Adam, N. Narita, and Y. Nishizawa, J. Am. Chem. Soc., 1984, **106**, 1843.
- 147. L. D. Arnold, T. H. Kalantar, and J. C. Vederas, J. Am. Chem. Soc., 1985, 107, 7105.
- 148. L. D. Arnold, J. C. G. Drover, and J. C. Vederas, J. Am. Chem. Soc., 1987, **109**, 4649.
- 149. L. D. Arnold, R. G. May, and J. C. Vederas, J. Am. Chem. Soc., 1988, 110, 2237.
- 150. P. R. McGuirk and D. B. Collum, J. Am. Chem. Soc., 1982, **104**, 4496; J. Org. Chem., 1984, **49**, 843.
- 151. G. Adam, R. Zibuck, and D. Seebach, J. Am. Chem. Soc., 1987, **109**, 6176.
- 152. S. V. Attwood, A. G. M. Barrett, R. A. E. Carr, and G. Richardson, J. Chem. Soc., Chem. Commun., 1986, 479.
- 153. A. G. M. Barrett, R. A. E. Carr, S. V. Attwood, G. Richardson, and N. D. A. Walshe, J. Org. Chem., 1986, **51**, 4840.
- 154. H. Tsutsui and O. Mitsunobu, Tetrahedron Lett., 1984, 25, 2163.
- 155. G. Traverso, D. Pirillo, and A. Gazzaniga, Gazz. Chim. Ital., 1983, **113**, 461.
- 156. L. Liu, R. S. Tanke, and M. J. Miller, J. Org. Chem., 1986, 51, 5332.
- 157. J. Butera, J. Rini, and P. Helquist, J. Org. Chem., 1985, 50, 3676.
- 158. K. Barlos, D. Gatos, J. Kallitsis, D. Papaioannou, P. Sotiariou, and W. Schafer, Justus Liebigs Ann. Chem., 1987, 1031.
- 159. K. Barlos, D. Gatos, J. Kallitsis, D. Papaioannou, and P. Sotiriou, Justus Liebigs Ann. Chem., 1988, 1079.
- 160. S. Bittner and Y. Assaf, Chem. Ind. (London), 1975, 281.
- 161. M. S. Manhas, W. H. Hoffman, B. Lal, and A. K. Bose, J. Chem. Soc., Perkin Trans. 1, 1975, 461.
- 162. N. L. Dirlam, B. S. Moore, and F. J. Urban, J. Org. Chem., 1987, **52**, 3587.
- 163. S. Danishefsky, E. M. Berman, M. Ciufolini, S. J. Etheredge, and B. E. Segmuller, J. Am. Chem. Soc., 1985, **107**, 3891.
- 164. H. Sugihara, H. Mabuchi, M. Hirate, T. Inamoto, and Y. Kawamatsu, Chem. Pharm. Bull., 1987, **35**, 1930.
- 165. T. L. Shih, M. J. Wyvratt, and H. Mrozik, J. Org. Chem., 1987, 52, 2029.
- 166. A. G. Schultz and P. Sundararaman, Tetrahedron Lett., 1984, 25, 4591.
- 167. B. M. Trost, M. G. Saulnier, Tetrahedron Lett., 1985, 26, 123.
- 168. C. A. Townsend, G. M. Salituro, L. T. Nguyen, and M. J. Di Novi, Tetrahedron Lett., 1986, **27**, 3819.
- 169. M. Hrytsak and T. Durst, Heterocycles, 1987, 26, 2393.

- 170. D. O. Spry and A. R. Bhala, Heterocycles, 1986, 24, 1653.
- 171. M. Moreno-Manas, J. Ribas, and A. Virgili, Synthesis, 1985, 699.
- 172. G. Grynkiewicz and A. Zamojski, Syn. Comm., 1978, 8, 491.
- 173. W. A. Szarek, H. C. Jarrell, and J. K. N. Jones, Carbohydr. Res., 1977, 57, C13.
- 174. J. T. Carlock and M. P. Mack, Tetrahedron Lett., 1978, 5153.
- 175. K. Capek, J. Capkova, J. Jary, Y. A. Knirel, and A. S. Shashkov, Coll. Czech. Chem. Comm., 1987, **52**, 2248.
- 176. R. D. Guthrie, I. D. Jenkins, S. Thang, and R. Yamasaki, Carbohydr. Res., 1983, **121**, 109.
- 177. R. D. Guthrie and I. D. Jenkins, Aust. J. Chem., 1981, **34**, 1997.
- 178. R. J. Ferrier, P. Prasit, and G. J. Gainsford, J. Chem. Soc., Perkin Trans. 1, 1983, 1629.
- 179. R. J. Ferrier, P. Schmidt, and P. C. Tyler, J. Chem. Soc., Perkin Trans. 1, 1985, 301.
- 180. (a) S. S. Bhagwat, P. R. Hamann, and W. C. Still, J. Am. Chem. Soc., 1985, **107**, 6372. (b) S. S. Bhagwat, P. R. Hamann, W. C. Still, S. Bunting, and F. A. Fitzpatrick, Nature, 1985, **315**, 511. (c) S. S. Bhagwat, P. R. Hamann, and W. C. Still, Tetrahedron Lett., 1985, **26**, 1955.
- 181. P. L. Robinson, C. N. Barry, S. W. Bass, S. E. Jarvis, and S. A. Evans, J. Org. Chem., 1983, **48**, 5396.
- 182. I. Galynker and W. C. Still, Tetrahedron Lett., 1982, 23, 4461; J. Am. Chem. Soc., 1982, 104, 1774.
- 183. E. Grochowski and T. Boleslawska, Pol. J. Chem., 1981, 55, 615.
- 184. E. Grochowski and J. Jurczak. Carbohydr. Res., 1976, C15; Synthesis, 1976, **10**, 682.
- 185. D. W. Dixon and R. H. Weiss, J. Org. Chem., 1984, **49**, 4487.
- 186. H. Usui, A. Matsuda, and T. Veda, Chem. Pharm. Bull., 1986, 34, 1961.
- 187. T. Trichtinger, R. Charubala, and W. Pfleiderer, Tetrahedron Lett., 1983, **24**, 711.
- 188. F. Himmelsbach, B. S. Schulz, T. Trichtinger, R. Charubala, and W. Pfleiderer, Tetrahedron, 1984, **40**, 59–72.
- 189. B. S. Schulz and W. Pfleiderer, Helv. Chim. Acta, 1987, 70, 210.
- 190. H. Takaku, T. Ito, and K. Imai, Chem. Lett., 1986, 1005.
- 191. B. S. Schulz and W. Pfleiderer, Tetrahedron Lett., 1983, 24, 3587.
- 192. A. van Aerschot, B. Peeters, and H. Vanderhaeghe, Nucleotides, Nucleosides, 1987, 6, 437.
- 193. A. J. Malkiewicz, B. Nawrot, and E. Sochacka, Z. Naturforsch., 1987, **42B**, 360.

- 194. X. Gao, B. L. Gaffney, S. Hadden, and R. A. Jones, J. Org. Chem., 1986, **51**, 755.
- P. G. Sammes and D. Thetford, J. Chem. Soc., Chem. Commun., 1985, 352; J. Chem. Soc., Perkin Trans. 1, 1988, 111; Tetrahedron Lett., 1986, 27, 2275.
- 196. D. M. Roush and M. M. Patel, Synth. Commun., 1985, 15, 675.
- 197. P. B. Kay and S. Trippett, J. Chem. Soc., Perkin Trans. 1, 1987, 1813.
- 198. D. W. Norbeck, J. B. Kramer, and P. A. Lartey, J. Org. Chem., 1987, **52**, 2174.
- 199. W. A. Hoffman, J. Org. Chem., 1982, 47, 5209.
- 200. J. Kimura, H. Kobayashi, O. Miyahara, and O. Mitsunobu, Bull. Chem. Soc. Jpn., 1986, **59**, 869.
- 201. E. Grochowski, H. Stepowska, and C. J. Michejda, Bull. Pol. Acad. Sci. 1984, **32**, 129.
- 202. J. Mulzer and C. Brand, Tetrahedron, 1986, 42, 5961.
- 203. G. L. Grunewald, V. M. Paradkar, B. Pazhenchevsky, M. A. Pleiss, D. J. Sall, W. L. Seibel, and T. J. Reitz, J. Org. Chem., 1983, **48**, 2321.
- 204. G. L. Grunewald, H. S. Arrington, W. J. Bartlett, T. J. Reitz, and D. J. Sall, J. Med. Chem., 1986, 29, 1972.
- 205. Review: W. N. Speckamp and H. Hiemstra, Tetrahedron, 1985, 41, 4367.
- 206. D. J. Hart, J. Org. Chem., 1981, 46, 367.
- 207. H. Knotz and E. Zbiral, Lieb Ann. Chem., 1986, 1736.
- 208. E. Fabiano, B. T. Golding and M. M. Sadeghi, Synthesis, 1987, 190.
- 209. P. G. Mattingly, J. F. Kerwin, and M. J. Miller, J. Am. Chem. Soc., 1979, **101**, 3983.
- 210. M. J. Miller, P. G. Mattingly, M. A. Morrison, and J. F. Kerwin, J. Am. Chem. Soc., 1980, **102**, 7026.
- 211. M. J. Miller, Acc. Chem. Res., 1986, **19**, 49.
- 212. M. J. Miller and P. G. Mattingly, Tetrahedron, 1983, **39**, 2563.
- 213. M. Jung and M. J. Miller, Tetrahedron Lett., 1985, 26, 977.
- 214. A. K. Bose, D. P. Sahu, and M. S. Manhas, J. Org. Chem., 1981, **46**, 1229.
- 215. A. K. Bose, M. S. Manhas, D. P. Sahu, and V. R. Hegde, Can. J. Chem., 1984, **62**, 2498.
- 216. M. A. Morrison and M. J. Miller, J. Org. Chem., 1983, 48, 4421.
- 217. T. Kolasa and M. J. Miller, Tetrahedron Lett., 1987, 28, 1861.
- 218. P. J. Maurer and M. J. Miller, J. Org. Chem., 1981, **46**, 2835; J. Am. Chem. Soc., 1983, **105**, 240.
- 219. (a) C. A. Townsend and L. T. Nguyen, J. Am. Chem. Soc., 1981, 103,

4582; (b) Tetrahedron Lett., 1982, 23, 4859.

- 220. J. D. Godfrey, R. H. Mueller, and D. J. Von Langen, Tetrahedron Lett., 1986, **27**, 2793.
- 221. J. R. Pfister, Synthesis, 1984, 969.
- 222. P. G. Sammes and S. Smith, J. Chem. Soc., Chem. Commun., 1983, 682;
 J. Chem. Soc., Perkin Trans. 1, 1984, 2415.
- 223. P. G. Sammes, S. Smith, and G. T. Woolley, J. Chem. Soc., Perkin Trans. 1, 1984, 2603.
- 224. S. Danishefsky and J. Regan, Tetrahedron Lett., 1981, 22, 3919.
- 225. S. Takano, Y. Imamura, and K. Ogasawara, Chem. Lett., 1981, 1385; Tetrahedron Lett., 1981, **22**, 4479.
- 226. K. Minamoto, Y. Fujiki, N. Shiomi, Y. Uda, and T. Sasaki, J. Chem. Soc., Perkin Trans. 1, 1985, 2337.
- 227. A. P. Kozikowski and M. Okita, Tetrahedron Lett., 1985, 26, 4043.
- 228. T. Kolasa and M. J. Miller, J. Org. Chem., 1987, 52, 4978.
- 229. T. Gajda, Synthesis, 1987, 1108.
- 230. (a) E. Slusarska and A. Zwierzak, Lieb. Ann. Chem., 1986, 402. (b) J. R. Henry, L. R. Marcin, M. C. McIntosh, P. M. Scola, G. D. Harris, and S. M. Weinreb, Tetrahedron Lett., 1989, **30**, 5709.
- 231. R. P. Volante, Tetrahedron Lett., 1981, 22, 3119.
- 232. B. Strijtveen and R. M. Kellog, J. Org. Chem., 1986, 51, 3664.
- 233. B. Strijtveen and R. M. Kellogg, Rec. Trav. Chim. Pays-Bas, 1987, **106**, 539.
- 234. I. Fujii, H. Togame, M. Yamamoto, K. Kanematsu, I. Takayanagi, and F. Konno, Chem. Pharm. Bull., 1988, **36**, 2282.
- 235. (a) R. Breslow, A. W. Czarnik, M. Lauer, R. Leppkes, J. Winkler, and S. Zimmerman, J. Am. Chem. Soc., 1986, **108**, 1969. (b) J. Winkler, E. Coutouli-Argyropoulou, R. Leppkes, and R. Breslow, J. Am. Chem. Soc., 1983, **105**, 7198.
- 236. T. Kunieda, T. Ishizuka, and M. Hirobe, Chem. Pharm. Bull., 1983, **31**, 3360.
- 237. P. L. Polavarapu and H. E. Smith, J. Phys. Chem., 1988, 92, 1774.
- 238. G. D. Prestwich, W.-S. Eng, R. M. Roe, and B. D. Hammock, Arch. Biochem. Biophys., 1984, **228**, 639.
- 239. F. A. J. Kerdesky, S. P. Schmidt, J. H. Holms, R. D. Dyer, G. W. Carter, and D. W. Brooks, J. Med. Chem., 1987, **30**, 1177.
- 240. C.-P. Mak and G. Schulz, Heterocycles, 1988, 27, 331.
- 241. N. B. Hanna, K. G. Upadhya, C. R. Petrie, R. K. Robins, and G. N. Revankar, Nucleosides and Nucleotides, 1986, **5**, 343.
- 242. I. D. Jenkins and S. Thang, Aust. J. Chem., 1984, 37, 1925.

- 243. G. A. Flynn, J. Org. Chem., 1983, 48, 4125.
- 244. H. A. Kirst, J. E. Toth, M. Debono, K. E. Willard, B. A. Truedell, J. L. Oh, F. T. Counter, A. M. Felty-Duckworth, and R. S. Pekarek, J. Med. Chem., 1988, **31**, 1631.
- 245. H. Loibner and E. Zbiral, Helv. Chim. Acta, 1976, **59**, 2100.
- 246. T. Gajda, Synthesis, 1988, 327.
- 247. H. A. Kirst, J. E. Toth, J. A. Wind, M. Debono, K. E. Willard, R. M. Molloy, J. W. Paschal, J. L. Ott, A. M. Felty-Duckworth, and F. T. Counter, J. Antibiotics, 1987, 40, 823.
- 248. Y. Tamaru, O. Ishige, S. Kawamura, and Z. Yoshida, Tetrahedron Lett., 1984, **25**, 3583.
- 249. Y. Tamaru, T. Hioki, S. Kawamura, H. Satomi, and Z. Yoshida, J. Am. Chem. Soc., 1984, **106**, 3876.
- 250. H. Nagasawa and O. Mitsunobu, Bull. Chem. Soc. Jpn., 1981, 54, 2223.
- 251. P. Rollin, Synth. Commun., 1986, 16, 611.
- 252. M. Alpegiani, E. Perrone, and G. Franceschi, Heterocycles, 1988, 27, 49.
- 253. M. Alpegiani, A. Bedeschi, E. Perrone, F. Zarini, and G. Franceschi, Heterocycles, 1985, **23**, 2255.
- 254. J. R. Dormoy, Synthesis, 1982, 753.
- 255. T. Tanaka, T. Hashimoto, K. Iino, Y. Sugimura, and T. Miyadera, J. Chem. Soc., Chem. Commun., 1982, 713.
- 256. R. L. Dow, R. C. Kelly, I. Schletter, and W. Wierenga, Synth. Commun., 1981, **11**, 43.
- 257. H. Kunz and P. Schmidt, Tetrahedron Lett., 1979, 2123.
- 258. M. Alpegiani, A. Bedeschi, and E. Perrone, Gazz. Chim. Ital., 1985, **115**, 393.
- 259. Y. Torisawa, M. Shibasaki, and S. Ikegami, Tetrahedron Lett., 1981, **22**, 2397.
- 260. M. Shibasaki, Y. Torisawa, and S. Ikegami, Tetrahedron Lett., 1982, 23, 4607.
- 261. H. Kunz and W. Sager, Helv. Chim. Acta, 1985, 68, 283.
- 262. P.-T. Ho and N. Davies, J. Org. Chem., 1984, **49**, 3027.
- 263. S. Manna, J. R. Falck, and C. Mioskowski, Synth. Commun., 1985, **15**, 663.
- 264. T. Oshikawa and M. Yamashita, Bull. Chem. Soc. Jpn., 1984, 57, 2675.
- 265. T. Kurihara, M. Sugizaki, I. Kime, M. Wada, and O. Mitsunobu, Bull. Chem. Soc. Jpn., 1981, 54, 2107.
- 266. H.-J. Liu and H. Wynn, Can. J. Chem., 1986, 64, 658.
- 267. D. Cabaret, N. Maigrot, and Z. Welvart, Tetrahedron Lett., 1981, 22,

5279.

- 268. D. Cabaret, N. Maigrot, and Z. Welvart, Tetrahedron Lett., 1984, 25, 547.
- 269. D. Cabaret, N. Maigrot, and Z. Welvart, Tetrahedron, 1985, 41, 5357.
- 270. P. Magnus and T. Gallagher, J. Chem. Soc., Chem. Commun., 1984, 389.
- 271. P. Magnus, T. Gallagher, J. Schultz, Y.-S. Or, and T. P. Ananthanarayan, J. Am. Chem. Soc., 1987, **109**, 2706.
- 272. D. L. Boger and R. S. Coleman, J. Am. Chem. Soc., 1988, 110, 4796.
- 273. (a) M. A. Warpehoski, I. Gebhard, R. C. Kelly, W. C. Krueger, L. H. Li, J. P. McGovern, M. D. Prairie, N. Wicnienski, and W. Wierenga, J. Med. Chem., 1988, **31**, 590. (b) P. Magnus, B. Mugrage, M. R. DeLuca, and G. A. Cain, J. Am. Chem. Soc., 1990, **112**, 5220.
- 274. D. L. Boger and R. S. Coleman, J. Org. Chem., 1984, 49, 2240.
- 275. B. Mlotkowska, and M. Wartalowska-Graczyk, J. Prakt. Chem., 1987, **329**, 735.
- 276. P. J. Maurer and M. J. Miller, J. Am. Chem. Soc., 1982, **104**, 3096.
- 277. R. H. Bradbury and K. A. M. Walker, Tetrahedron Lett., 1982, 23, 1335.
- 278. R. H. Bradbury and K. A. M. Walker, J. Org. Chem., 1983, 48, 1741.
- 279. M. A. Tius, A. Thurkauf, Tetrahedron Lett., 1986, 27, 4541.
- 280. B. Schonecker, H. Eibisch, G. Schubert, M. Wunderwald, and K. Ponsold, Pharmazie, 1986, **41**, 320.
- 281. L. A. Paquette, J. L. Romine, and H.-S. Lin, Tetrahedron Lett., 1987, **28**, 31.
- 282. D. R. St. Laurent and L. A. Paquette, J. Org. Chem., 1986, 51, 3861.
- 283. J. Mulzer, A. Pointner, A. Chucholowski, and G. Bruntrup, J. Chem. Soc., Chem. Commun., 1979, 52.
- 284. J. Mulzer and O. Lammer, Angew. Chem. Suppl., 1983, 887.
- 285. G. Penz and E. Zbiral, Monatsh. Chem., 1981, **112**, 1045.
- 286. L. P. L. Piacenza, K. Pegel, M. Laing, E. S. Waight, C. M. Weeks, and C. P. Gorst-Allman, J. Chem. Soc., Perkin Trans. 1, 1985, 703.
- 287. R. F. C. Brown, K. B. Caldwell, B. M. Gatehouse, and P. Y. T. Teo, Aust. J. Chem., 1985, **38**, 1339.
- 288. O. Mitsunobu and N. Yoshida, Tetrahedron Lett., 1981, 22, 2295.
- 289. S. Bittner, Y. Assaf, P. Krief, M. Pomerantz, B. T. Ziemnicka, and C. G. Smith, J. Org. Chem., 1985, **50**, 1712.
- 290. S. Bittner, Y. Assaf, and M. Pomerantz, J. Org. Chem., 1982, 47, 99.
- 291. M. Pomerantz, W.-N. Chou, M. K. Witczak, and C. G. Smith, J. Org. Chem., 1987, **52**, 159.
- 292. (a) C. Lensink, B. DeRuiter, and J. C. van de Grampel, J. Chem. Soc.,

Dalton Trans., 1984, 1521. (b) F. Urpf and J. Vilarrasa, Tetrahedron Lett., 1990, **31**, 7497.

- 293. W. H. Kruizinga, B. Strijtveen, and R. M. Kellogg, J. Org. Chem., 1981, 46, 4321.
- 294. J. W. Huffman and R. C. Desai, Synth. Commun., 1983, 13, 553.
- 295. Y. Torisawa, H. Okabe, and S. Ikegami, Chem. Lett., 1984, 1555.
- 296. S. F. Martin and C. L. Campbell, J. Org. Chem., 1988, 53, 3184.
- 297. C. L. Willis, Tetrahedron Lett., 1987, 28, 6705.
- 298. U. Burkard and F. Effenberger, Chem. Ber., 1986, 119, 1594.
- 299. J. M. Dener, D. J. Hart, and S. Ramesh, J. Org. Chem., 1988, 53, 6022.
- 300. D. M. Floyd, G. A. Crosby and N. M. Weinshenker, Tetrahedron Lett., 1972, 3265, 3269.
- 301. E. J. Corey, K. C. Nicolaou, M. Shibasaki, Y. Machida, and C. S. Shiner, Tetrahedron Lett., 1975, 3183.
- 302. J. San Filippo, C.-I. Chern, J. S. Valentine, J. Org. Chem., 1975, **40**, 1678.
- 303. M. Ladlow, G. Pattenden, and S. J. Teague, Tetrahedron Lett., 1986, 27, 3279.
- 304. R. Latrell and G. Lohaus, Justus Liebigs Ann. Chem., 1974, 901.
- 305. B. Raduchel, Synthesis, 1980, 292.
- 306. G. Cainelli, F. Maneschalchi, G. Martelli, M. Panunzio, and L. Plessi, Tetrahedron Lett., 1985, 26, 3369.
- 307. G. Cainelli, M. Panunzio, T. Basile, A. Bongini, D. Giacomini, and G. Martelli, J. Chem. Soc., Perkin Trans. 1, 1987, 2637.
- 308. S. Hanessian and J.-M. Vatele, Tetrahedron Lett., 1981, 22, 3579.
- 309. S. Hanessian, S. P. Sahoo, C. Couture, and H. Wyss, Bull. Soc. Chim. Belg., 1984, **93**, 571.
- 310. S. Hanessian, C. Couture, and H. Wyss, Can. J. Chem., 1985, 63, 3613.
- 311. J. Kaulen, Angew. Chem. Int. Ed. Engl., 1987, 26, 773.
- 312. Y. Inoue, M. Taguchi, and H. Hashimoto, Synthesis, 1986, 332.
- 313. S. D. Burke, D. M. Armistead, F. J. Schoenen, and J. M. Fevig, Tetrahedron, 1986, **42**, 2787.
- 314. S. Labidalle, Z. Y. Min, A. Reynet, H. Moskowitz, J.-M. Vierfond, and M. Miocque, Tetrahedron, 1988, 44, 1171.
- 315. R. A. Bell and J. V. Turner, Tetrahedron Lett., 1981, 22, 4871.
- 316. T. Kitahara, H. Kurata, and K. Mori, Tetrahedron, 1988, 44, 4339.
- 317. E. Morera and G. Ortar, J. Org. Chem., 1983, 48, 119.
- 318. W. L. Brown and A. G. Fallis, Tetrahedron Lett., 1985, **26**, 607; Can. J. Chem., 1987, **65**, 1828.

- 319. K. Hojo, H. Yoshino, and T. Mukaiyama, Chem. Lett., 1977, 133.
- 320. K. Hojo, H. Yoshino, and T. Mukaiyama, Chem. Lett., 1977, 437.
- 321. B. Castro and C. Selve, Bull. Soc. Chim. Fr., 1971, 2296.
- 322. I. M. Downie, H. Heaney, and G. Kemp. Angew. Chem. Int. Ed. Engl., 1975, **14**, 370.
- 323. F. Chretien, Y. Chapleur, B. Castro, and B. Gross, J. Chem. Soc., Perkin Trans. 1, 1980, 381.
- 324. A. Hasegawa, E. Seki, Y. Hioki, and M. Kiso, Carbohydr. Res., 1984, **131**, 61.
- 325. I. Nakagawa and T. Hata, Tetrahedron Lett., 1975, 1409.
- 326. K. A. M. Walker, Tetrahedron Lett., 1977, 4475.
- 327. Y. Tanigawa, H. Kanamaru, and S. Murahashi, Tetrahedron Lett., 1975, 4655.
- 328. The popularity of these reagents is shown by the 84 citations of references 325 and 326 through 1988.
- 329. P. L. Robinson, C. N. Barry, J. W. Kelly, and S. A. Evans, Jr., J. Am. Chem. Soc., 1985, **107**, 5210.
- 330. B. C. Chang, W. E. Conrad, D. B. Denney, D. Z. Denney, R. Edelman, R.
 L. Powell, and D. W. White, J. Am. Chem. Soc., 1971, 93, 4004.
- 331. D. B. Denney, D. Z. Denney, and J. J. Gigantino, J. Org. Chem., 1984, **49**, 2831.
- 332. J. C. Martin, J. A. Franz, and R. J. Arhart, J. Am. Chem. Soc., 1974, **96**, 4604.
- 333. W. Eschenmoser and C. H. Eugster, Helv. Chim. Acta, 1978, 61, 822.
- 334. C. N. Barry and S. A. Evans, Jr., J. Org. Chem., 1981, 46, 3361.
- 335. C. N. Barry and S. A. Evans, Jr., Tetrahedron Lett., 1983, 24, 661.
- 336. B. Castro and C. Selve, Tetrahedron Lett., 1973, 4459.
- 337. P. Kocienski and M. Todd, J. Chem. Soc., Perkin Trans. 1, 1983, 1783.
- 338. T. Hata, I. Yamamoto, and M. Sekine, Chem. Lett., 1975, 977.
- 339. I. Yamamoto, M. Sekine, and T. Hata, J. Chem. Soc., Perkin Trans. 1, 1980, 306.
- 340. Y. Chapleur, B. Castro, and B. Gross, Synth. Commun., 1977, 7, 143.
- 341. V. N. Gogte, S. B. Kulkarni, and B. D. Tilak, Tetrahedron Lett., 1973, 1867.
- 342. J. P. Freeman and P. J. Mondron, Synthesis, 1974, 894.
- 343. J. Okada, K. Ishimura, and R. Sudo, Bull. Chem. Soc. Jpn., 1970, **43**, 1185.
- 344. V. Stoilova, L. S. Trifonov, and A. S. Orahovats, Synthesis, 1979, 105.
- 345. R. Appel and R. Kleinstuck, Chem. Ber., 1974, 107, 5.

- 346. D. M. Floyd, A. W. Fritz, J. Pluscec, E. R. Weaver, and C. M. Cimarusti, J. Org. Chem., 1982, **47**, 5160.
- 347. D. M. Floyd, A. W. Fritz, and C. M. Cimarusti, J. Org. Chem., 1982, **47**, 176.
- 348. R. W. Binkley and D. G. Hehemann, J. Org. Chem., 1978, 43, 3244.
- 349. R. W. Binkley, M. G. Ambrose, and D. G. Hehemann, J. Org. Chem., 1980, **45**, 4387.
- 350. S. Hanessian and N. R. Plessas, J. Org. Chem., 1969, 34, 2163.
- 351. H. J. Jennings and J. K. N. Jones, Can. J. Chem., 1965, 43, 2372.
- 352. T. Mukaiyama, S. Shoda, and Y. Watanabe, Chem. Lett., 1977, 383.
- 353. K. Hojo and T. Mukaiyama, Chem. Lett., 1976, 619.
- 354. J. B. Lee and M. M. El Sawi, Chem. Ind. (London), 1960, 839.
- 355. P. J. Garegg, Pure Appl. Chem., 1984, 56, 845.
- 356. B. Classon, Z. Liu, and B. Samuelsson, J. Org. Chem., 1988, 53, 6126.
- 357. S. A. Lysenko, M. P. Koroteev, S. A. Ermishkina, A. S. Shashkov, E. E. Nifant'ev, and N. K. Kochetkov, Izv. Akad. Nauk SSSR Ser Khim (Eng. Trans.), 1979, 2215.
- 358. B. Classon, P. J. Garegg, and B. Samuelsson, Can. J. Chem., 1981, **59**, 339.
- 359. N. K. Kochetkov and A. I. Usov, Tetrahedron, 1963, **19**, 973.
- 360. S. Hanessian, M. M. Ponpipom, and P. Lavallee, Carbohydr. Res., 1972, 24, 45.
- 361. C. R. Haylock, L. D. Melton, K. N. Slessor, and A. S. Tracey, Carbohydr. Res., 1971, **16**, 375.
- 362. F. Germain, Y. Chapleur, and B. Castro, Tetrahedron, 1982, 38, 3593.
- 363. R. Boigegrain, B. Castro, and C. Selve, Tetrahedron Lett., 1975, 2529.
- 364. D. Brett, I. M. Downie, and J. B. Lee, J. Org. Chem., 1967, 32, 855.
- 365. A. Mizumo, Y. Hamada, and T. Shioiri, Synthesis, 1980, 1007.
- 366. T. Mukaiyama, M. Imaoka, and T. Izawa, Chem. Lett., 1977, 1257.
- 367. P. A. Aristoff, A. W. Harrison, and A. M. Huber, Tetrahedron Lett., 1984, **25**, 3955.
- 368. R. W. Hoffmann and A. Endesfelder, Justus Liebigs Ann. Chem., 1986, 1823.
- 369. J. M. Palazon, B. Anorbe, and V. S. Martin, Tetrahedron Lett., 1986, **27**, 4987.
- 370. T. Fukuyama, A. A. Laird, and L. M. Hotchkiss, Tetrahedron Lett., 1985, **26**, 6291.
- 371. H. Suemune, Y. Mizuhara, H. Akita, T. Oishi, and K. Sakai, Chem. Pharm. Bull., 1987, 35, 3112.

- 372. C. Somoza, M. I. Colombo, A. C. Olivieri, M. Gonzalez-Sierra, and E. A. Ruveda, Synth. Commun., 1987, 17, 1727.
- 373. A. G. M. Barrett, R. A. E. Carr, M. A. W. Finch, J. C. Florent, G. Richardson, and N. D. A. Walshe, J. Org. Chem., 1986, **51**, 4254.
- 374. D. A. Otero and R. Simpson, Carbohydr. Res., 1984, 128, 79.
- 375. J. Mulzer and N. Salimi, Justus Liebigs Ann. Chem., 1986, 1172.
- 376. W. R. Roush, R. J. Brown, and M. Di Mare, J. Org. Chem., 1983, **48**, 5083.
- 377. T. Kinoshita, M. Miyata, S. M. Ismail, Y. Fujimoto, K. Kakinuma, N. Ikegawa, and M. Morisaki, Chem. Pharm. Bull., 1988, 36, 144.
- 378. C. A. Hoeger, A. D. Johnston, and W. H. Okamura, J. Am. Chem. Soc., 1987, **109**, 4690.
- 379. J. A. Marshall, J. Lebreton, B. S. De Hoff, and T. M. Jenson, J. Org. Chem., 1987, **52**, 3883; Tetrahedron Lett., 1987, **28**, 723.
- 380. T. Iida, T. Momose, T. Tamura, T. Matsumoto, F. C. Chang, J. Goto, and T. Nambara, J. Lipid Res., 1988, 29, 165.
- 381. I. Dyong, H. Merten, and J. Thiem, Justus Liebigs Ann. Chem., 1986, 600.
- 382. F.-H. Koster, H. Wolf, and H. Kluge, Justus Liebigs Ann. Chem., 1986, 78.
- 383. B. M. Trost and P. G. McDougal, J. Org. Chem., 1984, 49, 458.
- 384. G. W. Ashley, G. Harris, and J. Stubbe, Biochemistry, 1988, 27, 7841.
- 385. J. E. Toth, P. R. Hamann, and P. L. Fuchs, J. Org. Chem., 1988, **53**, 4694.
- 386. J. E. Toth and P. L. Fuchs, J. Org. Chem., 1987, 52, 473.
- 387. D. Camp and I. D. Jenkins, Aust. J. Chem., 1988, 41, 1835.
- 388. (a) R. A. Amos, R. W. Emblidge, and N. Havens, J. Org. Chem., 1983, 48, 3598. (b) L. D. Arnold, H. I. Assil, and J. C. Vederas, J. Am. Chem. Soc., 1989, 111, 3973.
- 389. O. Achmatowicz and G. Grynkiewicz, Tetrahedron Lett., 1977, 3179.
- 390. O. Mitsunobu, A. Takemasa, and R. Endo, Chem. Lett., 1984, 855.
- 391. Y. Fujimoto, M. Ohhana, T. Terasawa, and N. Ikekawa, Tetrahedron Lett., 1985, 26, 3239.
- 392. H. Akita, A. Furuichi, H. Koshiji, K. Horikoshi, and T. Oishi, Chem. Pharm. Bull., 1983, **31**, 4376.
- 393. M. P. Cava, Z. Ahmed, N. Benfaremo, R. A. Murphy, and G. J. O'Malley, Tetrahedron, 1984, **40**, 4767.
- 394. H. Mastalerz, M. Menard, V. Vinet, J. Desiderio, J. Fung-Tomc, R. Kessler, and Y. Tsai, J. Med. Chem., 1988, 31, 1190.
- 395. U. Schmidt, R. Utz, A. Lieberknecht, H. Griesser, B. Potzolli, J. Bahr, K. Wagner, and P. Fischer, Synthesis, 1987, 233.

- 396. M. J. Miller, J. S. Bajwa, P. G. Mattingly, and K. Peterson, J. Org. Chem., 1982, 47, 4928.
- 397. J. Wright, G. J. Drtina, R. A. Roberts, and L. A. Paquette, J. Am. Chem. Soc., 1988, **110**, 506.
- 398. S. Kosuge, N. Hamanaka, and M. Hayashi, Tetrahedron Lett., 1981, 22, 1345.
- 399. T. Kitahara, K. Koseki, and K. Mori, Agric. Biol. Chem., 1983, 47, 389.
- 400. A. Berkessel, J. Org. Chem., 1989, 54, 1685.
- 401. L. Dai, B. Lou, and Y. Zhang, J. Am. Chem. Soc., 1988, **110**, 5195.
- 402. E. Abushanab, P. Vemishetti, R. W. Leiby, H. K. Singh, A. B. Mikkilineni,D. C. Wu, R. Saibaba, and R. P. Panzica, J. Org. Chem., 1988, 53, 2598.
- 403. Y. Tamaru, S. Kawamura, T. Bando, K. Tanaka, M. Hojo, and Z. Yoshida, J. Org. Chem., 1988, **53**, 5491.
- 404. Y. Tamaru, M. Hojo, and Z. Yoshida, J. Org. Chem., 1988, 53, 5731.
- 405. P. F. Deschenaux, T. Kallimopoulous, and A. Jacot-Guillarmad, Helv. Chim. Acta, 1989, **72**, 1259.
- 406. J. Thiem and H. Luders, Makromol. Chem., 1986, **187**, 2275; Polymer Bull., 1984, **11**, 365.
- 407. M. Labelle, H. E. Morton, Y. Guindon, and J. P. Springer, J. Am. Chem. Soc., 1988, **110**, 4533.
- 408. G. Brussani, S. V. Ley, J. L. Wright, and D. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1986, 303.
- 409. G. Stork and S. D. Rychnovsky, J. Am. Chem. Soc., 1987, **109**, 1564; Pure Appl. Chem., 1987, **59**, 345.
- 410. K. Mori and T. Otsuka, Tetrahedron, 1985, **41**, 553.
- 411. T. Harada, I. Wada, and A. Oku, J. Org. Chem., 1989, 54, 2599.
- 412. J. Mulzer, A. Angermann, and W. Munch, Justus Liebigs Ann. Chem., 1986, 825.
- 413. K. Mori, H. Watanabe, K. Yanagi, and M. Minobe, Tetrahedron, 1985, **41**, 3663.
- 414. K. Mori, H. Watanabe, K. Yanagi, and M. Minobe, Tetrahedron Lett., 1984, **25**, 6025.
- 415. P. C. B. Page, C. M. Rayner, and I. O. Sutherland, Tetrahedron Lett., 1986, **27**, 3535.
- 416. H.-J. Gais, G. Bulow, A. Zatorski, M. Jentsch, P. Maidonis, and H. Hemmerle, J. Org. Chem., 1989, **54**, 5115.
- 417. K. C. Schneider and S. A. Benner, Tetrahedron Lett., 1990, 31, 335.
- 418. F. Kido, S. C. Sinha, T. Abiko, M. Watanabe, and A. Yoshikoshi, J. Chem. Soc., Chem. Commun., 1990, 418.
- 419. F. Sugawara, H. Nakayama, G. A. Strobel, and T. Ogawa, Agric. Biol.

Chem., 1986, **50**, 2261.

- 420. F. Sugawara, H. Nakayama, and T. Ogawa, Carbohydr. Res., 1983, **123**, C25.
- 421. P. E. Eaton, P. G. Jobe, and I. D. Reingold, J. Am. Chem. Soc., 1984, **106**, 6437.
- 422. T. Antonsson, C. Moberg, L. Tottie, and A. Heumann, J. Org. Chem., 1989, **54**, 4914.
- 423. R. M. Williams and B. H. Lee, J. Am. Chem. Soc., 1986, **108**, 6431.
- 424. D. R. Dodds and J. B. Jones, J. Am. Chem. Soc., 1988, **110**, 577.
- 425. T. Harada, K. Sakamoto, Y. Ikemura, and A. Oku, Tetrahedron Lett., 1988, **29**, 3097.
- 426. R. M. Williams, B. H. Lee, M. M. Miller, and O. P. Anderson, J. Am. Chem. Soc., 1989, **111**, 1073.
- 427. J. Mulzer, T. Schulze, A. Strecker, and W. Denzer, J. Org. Chem., 1988, 53, 4098.
- 428. G. Grynkiewicz, Pol. J. Chem., 1981, 55, 2047.
- 429. K. Mori and K. Tanida, Heterocycles, 1981, 15, 1171.
- 430. A. B. Smith, III, G. A. Sulikowski, and K. Fujimoto, J. Am. Chem. Soc., 1989, **111**, 8039.
- 431. A. Baumeler, W. Brade, A. Haag, and C. H. Eugster, Helv. Chim. Acta, 1990, **73**, 700.
- 432. P. De Witt, D. Misiti, and G. Zappia, Tetrahedron Lett., 1989, 30, 5505.
- 433. P. G. Sammes, Gazz. Chim. Ital., 1986, **116**, 109.
- 434. K. Kakiuchi, S. Kumanoya, M. Ue, Y. Tobe, and Y. Odaira, Chem. Lett., 1985, 989.
- 435. A. Warm and P. Vogel, Helv. Chim. Acta, 1987, 70, 690.
- 436. A. Warm and P. Vogel, Tetrahedron Lett., 1986, 27, 5615.
- 437. H. Sefoi, H. Takeno, and M. Hashimoto, Heterocycles, 1986, 24, 1261.
- 438. Y. Naoshima and H. Hasegawa, Chem. Lett., 1987, 2379.
- 439. I. Murata, Y. Sugihara, T. Sugimura, and S. Wakabayashi, Tetrahedron, 1986, **42**, 1745.
- 440. K. Mori and T. Ebata, Tetrahedron, 1986, 42, 4413.
- 441. J.-C. Zwick, P. Vogel, V. Mange, and G. Chapuis, Helv. Chim. Acta, 1987, **70**, 1231.
- 442. N. Ikota and A. Hanaki, Heterocycles, 1988, 27, 2535.
- 443. K. Mori and M. Ikunaka, Tetrahedron, 1984, 40, 3471.
- 444. T. Hamatani, S. Matsubara, H. Matsuda, and M. Schlosser, Tetrahedron, 1988, 44, 2875.
- 445. P. Yates, R. S. Grewal, P. C. Hayes, and J. F. Sawyer, Can. J. Chem.,

1988, **66**, 2805.

- 446. G. E. Keck, E. P. Boden, and M. R. Wiley, J. Org. Chem., 1989, 54, 896.
- 447. A. B. Mikkilineni, P. Kumar, and E. Abushanab, J. Org. Chem., 1988, **53**, 6005.
- 448. J. M. Chong and E. K. Mar, Tetrahedron, 1989, 45, 7709.
- 449. K. Tomioka and K. Koga, Tetrahedron, 1988, 44, 4351.
- 450. M. Iwao and T. Kuraishi, Tetrahedron Lett., 1983, 24, 2649.
- 451. A. V. R. Rao, J. S. Yadav, K. B. Reddy, and A. R. Mehendale, J. Chem. Soc., Chem. Commun., 1984, 453; Tetrahedron, 1984, **40**, 4643.
- 452. S. K. Richardson, M. R. Sabol, and D. S. Watt, Synth. Commun., 1989, **19**, 359.
- 453. S. Takano, Y. Sekiguchi, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1987, 555.
- 454. B. M. Trost, B. Yang, and M. L. Miller, J. Am. Chem. Soc., 1989, **111**, 6482.
- 455. R. S. Harapanhalli, J. Chem. Soc., Perkin Trans. 1, 1988, 2633.
- 456. I. H. Sanchez, F. J. Lopez, J. J. Soria, M. I. Larraza, and H. J. Flores, J. Am. Chem. Soc., 1983, **105**, 7640.
- 457. Y. Kobayashi, N. Kato, T. Shimazaki, and F. Sato, Tetrahedron Lett., 1988, **29**, 6297.
- 458. S. Shibahara, T. Okonogi, T. Yoshida, Y. Murai, T. Kudo, S. Inouye, and S. Kondo, J. Antibiotics, 1990, **43**, 62.
- 459. P. J. Maurer and M. J. Miller, J. Am. Chem. Soc., 1983, **105**, 240.
- 460. S. Takano and Y. Shimazaki, Chem. Lett., 1988, 2041.
- 461. R. L. Halterman and H. L. Nimmons, Organometallics, 1990, 9, 273.
- 462. N. Ishizuka, M. Shiro, and Y. Makisumi, J. Chem. Soc., Perkin Trans. 1, 1990, 827.
- 463. H.-E. Hogberg, E. Hedenstrom, A.-B. Wassgren, M. Hjalmarsson, G. Bergstrom, J. Lofqvist, and T. Norin, Tetrahedron, 1990, **46**, 3007.
- 464. A. S. Amarasekara and A. Hassner, Tetrahedron Lett., 1987, 28, 3151.
- 465. N. Jeker and C. Tamm, Helv. Chim. Acta, 1988, **71**, 1904.
- 466. H.-J. Gais and T. Lied, Angew. Chem., Int. Ed. Engl., 1984, 23, 145.
- 467. K. H. Bell, Aust. J. Chem., 1987, 40, 399.
- 468. M. Zeches, T. Ravao, B. Richard, G. Massiot, and L. Le Men-Olivier, Tetrahedron Lett., 1984, **25**, 659.
- 469. M. Sunagawa, H. Matsumura, T. Inoue, M. Fukasawa, and M. Kato, J. Antibiotics, 1990, **43**, 519.
- 470. C. E. Tonn, J. M. Palazon, C. Ruiz-Perez, M. L. Rodriquez, and V. S. Martin, Tetrahedron Lett., 1988, **29**, 3097.

- 471. J. A. Marshall and W. Y. Gung, Tetrahedron Lett., 1989, 30, 309.
- 472. N. Ikota, Chem. Pharm. Bull., 1989, **37**, 3399.
- 473. D.-S. Shin, P. Yadagiri, and J. R. Falck, Tetrahedron Lett., 1989, **30**, 3923.
- 474. T. Harada, H. Kurokawa, and A. Oku, Tetrahedron Lett., 1987, 28, 4847.
- 475. C. Yeates, S. D. A. Street, P. Kocienski, and S. F. Campbell, J. Chem. Soc., Chem. Commun., 1985, 1388.
- 476. P. Kocienski, S. D. A. Street, C. Yeates, and S. F. Campbell, J. Chem. Soc., Perkin Trans. 1, 1987, 2189.
- 477. P. Barbier and F. Schneider, J. Org. Chem., 1988, **53**, 1218.
- 478. M. Harre, P. Raddatz, R. Walenta, and E. Winterfeldt, Angew. Chem., Int. Ed. Engl., 1982, **21**, 480.
- 479. K.-Y. Ko and E. L. Eliel, J. Org. Chem., 1986, **51**, 5353.
- 480. K. Koike, M. Sugimoto, Y. Nakahara, and T. Ogawa, Carbohydr. Res., 1987, **162**, 237.
- 481. S. Nimkar, D. Menaldino, A. H. Merrill, and D. Liotta, Tetrahedron Lett., 1988, **29**, 3037.
- 482. S. Kamata, N. Haga, T. Tsuri, K. Uchida, H. Kakushi, H. Arita, and K. Hanasaki, J. Med. Chem., 1990, **33**, 229.
- 483. D. R. Williams, P. A. Jass, H.-L. A. Tse, and R. D. Gaston, J. Am. Chem. Soc., 1990, **112**, 4552.
- 484. K. Shisido, K. Tanaka, K. Fukumoto, and T. Kametani, Chem. Pharm. Bull., 1985, **33**, 532; Tetrahedron Lett., 1983, **24**, 2783.
- 485. H. Saito, Y. Nishimura, S. Kondo, and T. Takeuchi, Chem. Lett., 1988, 1235.
- 486. P. Yadagiri, S. Lumin, J. R. Falck, A. Karara, and J. Capdevila, Tetrahedron Lett., 1989, **30**, 429.
- 487. S. Ohuchida, N. Hamanaka, S. Hashimoto and M. Hayashi, Tetrahedron Lett., 1982, **23**, 2883.
- 488. S. Nishiyama, S. Yamamura, K. Kato, and T. Takita, Tetrahedron Lett., 1988, **29**, 4743.
- 489. J. Prandi and J.-M. Beau, Tetrahedron Lett., 1989, **30**, 4517.
- 490. H. Takahata, T. Takamatsu, and T. Yamazaki, J. Org. Chem., 1989, **54**, 4812.
- 491. P. Yadagiri, D.-S. Shin, and J. R. Falck, Tetrahedron Lett., 1988, **29**, 5497.
- 492. Y. Ichikawa, A. Narita, A. Shiozawa, Y. Hayashi, and K. Narasaka, J. Chem. Soc., Chem. Commun., 1989, 1919.
- 493. P. Metz, Tetrahedron, 1989, 45, 7311.
- 494. F. Hammerschmidt, Justus Liebigs Ann. Chem., 1988, 961.

- 495. M. Mag and J. W. Engels, Nucleosides, Nucleotides, 1988, 7, 725.
- 496. C. A. Townsend, A. S. Neese, and A. B. Theis, J. Chem. Soc., Chem. Commun., 1982, 116.
- 497. R. Croteau, N. M. Felton, and C. J. Wheeler, J. Biol. Chem., 1985, **260**, 5956.
- 498. T. Takahashi, M. Miyazawa, H. Ueno, and J. Tsuji, Tetrahedron Lett., 1986, **27**, 3881.
- 499. S. D. Pastor, P. A. Odorisio, and R. Ravichandran, Phosphorous Sulfur, 1986, **29**, 67.
- 500. Y. Ito, Y. Kobayashi, T. Kawabata, M. Takase, and S. Terashima, Tetrahedron, 1989, **45**, 5767.
- 501. P. Tecon, Y. Hirano, and C. Djerassi, Org. Mass. Spec., 1982, 17, 277.
- 502. S. N. Newaz and R. K. Tcholakian, Steroids, 1984, 43, 445.
- 503. N. S. Nadaraia, V. I. Sladkov, and N. N. Survorov, J. Org. Chem. USSR (Eng. Trans.), 1988, **24**, 682.
- 504. D. C. Swinney, D. E. Ryan, P. E. Thomas, and W. Levin, Biochemistry, 1987, **26**, 7073.
- 505. M. E. Deluca, A. M. Seldes, and E. G. Gros, Helv. Chim. Acta, 1986, **69**, 1844.
- 506. R. H. Purdy, A. L. Morrow, J. R. Blinn, and S. M. Paul, J. Med. Chem., 1990, **33**, 1572.
- 507. R. B. Gabbard and A. Segaloff, Steroids, 1983, 42, 555.
- 508. G. Stork and M. Sofia, J. Am. Chem. Soc., 1986, 108, 6826.
- 509. J. Valisolalao, B. Luu, and G. Ourisson, Tetrahedron, 1983, 39, 2779.
- 510. E. J. Corey and R. W. Hahl, Tetrahedron Lett., 1989, **30**, 3023.
- 511. M. Aburitani, T. Takeuchi, and K. Mori, Agric. Biol. Chem., 1986, **50**, 3043.
- 512. M. M. Campbell, A. J. Floyd, T. Lewis, M. F. Mahon, and R. J. Oglivie, Tetrahedron Lett., 1989, **30**, 1993.
- 513. P. G. Sammes and D. Thetford, J. Chem. Soc., Perkin Trans. 1, 1988, 111.
- 514. H. W. Pauls and B. Fraser-Reid, J. Carbohydr. Chem., 1985, 4, 1.
- 515. G. Schulte, W. Meyer, A. Starkloff, and I. Dyong, Chem. Ber., 1981, 1809.
- 516. H. W. Pauls and B. Fraser-Reid, Carbohydr. Res., 1986, 150, 111.
- 517. S. Valverde and S. Garcia-Ochoa, J. Carbohydr. Chem., 1989, 8, 553.
- 518. F. Baumberger, A. Vasella, and R. Schauer, Helv. Chim. Acta, 1988, **71**, 429.
- 519. O. Achmatowicz and M. H. Burzynska, Tetrahedron, 1982, 38, 3507.
- 520. O. Achmatowicz and M. H. Burzynska, Carbohydr. Res., 1985, 141, 67.

- 521. S. Jarosz, Carbohydr. Res., 1988, 183, 201.
- 522. H. A. Vaccaro, R. A. Rivero, and A. B. Smith, III, Tetrahedron Lett., 1989, **30**, 1465.
- 523. F. M. Hauser, S. R. Ellenberger, and W. P. Ellenberger, Tetrahedron Lett., 1988, **29**, 4939.
- 524. J. L. Pawlak, R. E. Padykula, J. D. Kronis, R. A. Aleksejczyk and G. A. Berchtold, J. Am. Chem. Soc., 1989, **111**, 3374.
- 525. A. Balan and H. Ziffer, J. Chem. Soc., Chem. Commun., 1990, 175.
- 526. B. M. Trost and E. D. Edstrom, Angew. Chem., Int. Ed. Engl., 1990, **29**, 520.
- 527. N. Ruiz and P. Rollin, Tetrahedron Lett., 1989, 30, 1637.
- 528. A. J. Pearson, Y.-S. Lai, W. Lu, and A. A. Pinkerton, J. Org. Chem., 1989, **54**, 3882.
- 529. J. A. Marshall and J. Lebreton, J. Org. Chem., 1988, 53, 4108.
- 530. J. Bergman and A. Brynolf, Tetrahedron, 1990, 46, 1295.
- 531. J. Jurczak, S. Pikul, and J. Raczko, Pol. J. Chem., 1987, 61, 645.
- 532. A. V. R. Rao, D. S. Bose, M. K. Gurjar, and T. Ravindranathan, Tetrahedron, 1989, **45**, 7031.
- 533. F. Gauchet, M. Julia, H. Mestdagh, and C. Rolando, Bull. Chim. Soc. Fr., 1987, 1036.
- 534. T. Honda, T. Kametani, K. Kanai, Y. Tatsuzaki, and M. Tsubuki, J. Chem. Soc., Perkin Trans. 1, 1990, 1733.
- 535. A. I. Meyers and S. Bienz, J. Org. Chem., 1990, 55, 791.
- 536. K. A. Babiak, J. S. Ng, J. H. Dygos, C. L. Weyker, Y.-F. Wang, and C. H. Wong, J. Org. Chem., 1990, **55**, 3377.
- 537. K. Sakurai, T. Kitahara, and K. Mori, Tetrahedron, 1990, 46, 761.
- 538. J. A. Marshall and X.-J. Wang, J. Org. Chem., 1990, 55, 2995.
- 539. T. Hudlicky, G. Seone, and T. Pettus, J. Org. Chem., 1989, 54, 4239.
- 540. A. G. Davies and I. G. E. Davison, J. Chem. Soc., Perkin Trans. 2, 1989, 825.
- 541. M. Koreeda, D. J. Ricca, and J. I. Luengo, J. Org. Chem., 1988, 53, 5588.
- 542. J. D. Harling and W. B. Motherwell, J. Chem. Soc., Chem. Commun., 1988, 1380.
- 543. H. Fretz, W.-D. Woggon, and R. Voges, Helv. Chim. Acta, 1989, 72, 391.
- 544. R. V. Bonnert, M. J. Davies, J. Howarth, and P. R. Jenkins, J. Chem. Soc., Chem. Commun., 1990, 148.
- 545. C. Le Drain, E. Vieira, and P. Vogel, Helv. Chem. Acta, 1989, 72, 338.
- 546. A. J. Briggs and K. A. M. Walker, J. Org. Chem., 1990, 55, 2962.
- 547. S. J. Danishefsky, M. P. Cabal, and K. Chow, J. Am. Chem. Soc., 1989,

111, 3456.

- 548. M. Ando, H. Kusaka, H. Ohara, K. Takase, H. Yamaoka, and Y. Yanagi, J. Org. Chem., 1989, **54**, 1952.
- 549. B. Gosse-Kobo, P. Mosset, and R. Gree, Tetrahedron Lett., 1989, **30**, 4235.
- 550. Y. Ito, M. Sawamura, and T. Hayashi, Tetrahedron Lett., 1988, 29, 239.
- 551. M. T. Nunez, M. L. Rodriguez, and V. S. Martin, Tetrahedron Lett., 1988, **29**, 1979.
- 552. A. V. R. Rao, P. R. Krishna, and J. S. Yadav, Tetrahedron Lett., 1989, **30**, 1669.
- 553. H. Pak, J. K. Dickson, and B. Fraser-Reid, J. Org. Chem., 1989, 54, 5357.
- 554. S. Lumin and J. R. Falck, Tetrahedron Lett., 1990, 31, 2971.
- 555. N. K. Kochetkov, D. V. Yashunsky, A. F. Sviridov, and M. S. Ermolenko, Carbohydr. Res., 1990, **200**, 209.
- 556. S. Lumin, P. Yadagiri, and J. R. Falck, Tetrahedron Lett., 1988, 29, 4237.
- 557. U. C. Dyer and Y. Kishi, J. Org. Chem., 1988, 53, 3383.
- 558. M. M. Bowers-Nemia and M. M. Joullie, Heterocycles, 1983, 20, 817.
- 559. M. Thaning and L.-G. Wistrand, Helv. Chim. Acta, 1986, 69, 1711.
- 560. B. S. Bal and H. W. Pinnick, Heterocycles, 1981, 16, 2091.
- 561. M. Barbier, Helv. Chim. Acta, 1981, 64, 1407.
- 562. H. Suemune, H. Maruoka, S. Saeki, and K. Sakai, Chem. Pharm. Bull., 1986, **34**, 4629.
- 563. T. Sakai, M. Yoshida, S. Kohmoto, M. Utaka, and A. Takeda, Tetrahedron Lett., 1982, **23**, 5185.
- 564. S. Valverde, A. Garcia-Ochoa, and M. Martin-Lomas, J. Chem. Soc., Chem. Comm., 1987, 1714.
- 565. S. D. Burke, A. D. Piscopio, and J. L. Buchanan, Tetrahedron Lett., 1988, 29, 2757.
- 566. D. G. Melillo, T. Liu, K. M. Ryan, M. Sletzinger, and I. Shinkai, Tetrahedron Lett., 1981, **22**, 913.
- 567. Y. Hamada, A. Kawai, and T. Shioiri, Chem. Pharm. Bull., 1985, 33, 5601.
- 568. R. J. Bass, B. J. Banks, M. R. G. Leeming, and M. Snarey, J. Chem. Soc., Perkin Trans. 1, 1981, 124.
- 569. K. Mori and H. Takaishi, Tetrahedron, 1989, 45, 1639.
- 570. S. Hatakeyama, K. Osanai, H. Numata, and S. Takano, Tetrahedron Lett., 1989, **30**, 4845.
- 571. D. Papaioannou, G. Stavropoulos, K. Karagiannis, G. S. Francis, T. Brekke, and D. W. Aksnes, Acta Chem. Scand., 1990, **44**, 243.
- 572. S. Takano, M. Yonaga, and K. Ogasawara, Synthesis, 1981, 265.

- 573. R. Zibuck, N. J. Liverton, and A. B. Smith, J. Am. Chem. Soc., 1986, **108**, 2451.
- 574. A. B. Smith, III, I. Noda, S. W. Remiszewski, N. J. Liverton, and R. Zibuck, J. Org. Chem., 1990, **55**, 3977.
- 575. S. D. Burke, D. M. Armistead, and K. Shankaran, Tetrahedron Lett., 1986, 27, 6295.
- 576. B. J. Whitlock and H. W. Whitlock, J. Am. Chem. Soc., 1990, 112, 3910.
- 577. Y. Ueda, J. M. Chuang, L. B. Crast, Jr., and R. A. Partyka, J. Antibiotics, 1989, **42**, 1379.
- 578. J. Nakano, M. Mimura, M. Hayashida, K. Kimura, and T. Nakanishi, Heterocycles, 1983, **20**, 1975.
- 579. R. C. Larock and D. E. Stinn, Tetrahedron Lett., 1988, **29**, 4687.
- 580. R. Schlecker and P. C. Thieme, Tetrahedron, 1988, 44, 3289.
- 581. S. Takano, Y. Iwabuchi, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1988, 1204.
- 582. K. Maruyama, N. Nagai, and Y. Naruta, J. Org. Chem., 1986, 51, 5083.
- 583. R. A. Murphy and M. P. Cava, Tetrahedron Lett., 1984, 25, 803.
- 584. F. Cottet, L. Cottier, G. Descotes, and R. M. Srivastava, J. Heterocyclic Chem., 1988, **25**, 1481.
- 585. P. E. J. Sanderson, J. D. Kilburn, and W. C. Still, J. Am. Chem. Soc., 1989, **111**, 8314.
- 586. R. F. W. Jackson and R. A. Raphael, J. Chem. Soc., Perkin Trans. 1, 1984, 535.
- 587. G. Consiglio, O. Piccolo, L. Roncetti, and F. Morandini, Tetrahedron, 1986, **42**, 2043.
- 588. D. M. Walba, R. T. Vohra, N. A. Clark, M. A. Handschy, J. Xue, D. S. Parmar, S. T. Lagerwall, and K. Skarp, J. Am. Chem. Soc., 1986, **108**, 7424.
- 589. J. A. Rao and M. P. Cava, J. Org. Chem., 1989, 54, 2751.
- 590. J. Nakano, M. Mimura, M. Hayashida, M. Fujii, K. Kimura, and T. Nakanishi, Chem. Pharm. Bull., 1988, **36**, 1399.
- 591. P. Beraud, A. Bourhim, S. Czernicki, and P. Krausz, Tetrahedron Lett., 1989, **30**, 325.
- 592. A. P. Marchand and P. R. Dave, J. Org. Chem., 1989, 54, 2775.
- S. Subramanian and K. K. Balasubramanian, Tetrahedron Lett., 1989, 30, 2297.
- 594. R. S. Subramanian and K. K. Balasubramanian, Tetrahedron Lett., 1988, **29**, 6797.
- 595. M. Srebnik, P. V. Ramachandran, and H. C. Brown, J. Org. Chem., 1988, 53, 2916.

- 596. G. D. Diana, D. Cutcliffe, R. C. Oglesby, M. J. Otto, J. P. Mallamo, V. Akullian, and M. A. McKinlay, J. Med. Chem., 1989, **32**, 450.
- 597. B. C. Askew, Tetrahedron Lett., 1990, 31, 4245.
- 598. D. H. S. Horn, R. H. Nearn, J. B. Siddall, G. B. Staal, and D. C. Cerf, Aust. J. Chem., 1983, **36**, 1409.
- 599. R. F. Nutt and M. M. Joullie, J. Am. Chem. Soc., 1982, 104, 5852.
- 600. M. M. Bowers, P. Carroll, and M. M. Joullie, J. Chem. Soc., Perkin Trans. 1, 1989, 857.
- 601. P. G. Baraldi, A. Barco, S. Benetti, A. Casolari, S. Manfredini, G. P. Pollini, and D. Simoni, Tetrahedron, 1988, **44**, 1267.
- 602. Y. Gao and K. B. Sharpless, J. Org. Chem. 1988, 53, 4081.
- 603. T. Kometani, H. Kondo, and Y. Fujimori, Synthesis, 1988, 1005.
- 604. R. W. Guthrie, G. L. Kaplan, F. A. Mennona, J. W. Tilley, R. W. Kierstead, J. G. Mullin, R. A. Le Mahieu, S. Zawoiski, M. O'Donnell, H. Crowley, B. Yaremko, and A. F. Welton, J. Med. Chem., 1989, **32**, 1820.
- 605. Y. Shizuri, H. Shigemori, Y. Okuno, and S. Yamamura, Chem. Lett., 1986, 2097.
- 606. M. M. Ponpipom, B. Z. Yue, R. L. Bugianesi, D. R. Brooker, M. N. Chang, and T. Y. Shen, Tetrahedron Lett., 1986, **27**, 309.
- 607. M. M. Ponpipom, R. L. Bugianesi, D. R. Brooker, B. Z. Yue, S. B. Hwang, and T. Y. Shen, J. Med. Chem., 1987, **30**, 136.
- 608. H. Yamashita, N. Minami, K. Sakakibara, S. Kobayashi, and M. Ohno, J. Antibiotics, 1987, **40**, 1716.
- 609. D. R. Buckle, D. J. Outred, H. Smith, and B. A. Spicer, J. Med. Chem., 1984, **27**, 1452.
- 610. S. Takano, M. Akiyama, and K. Ogasawara, Chem. Lett., 1985, 505.
- 611. K. A. M. Walker, M. B. Wallach, D. R. Hirschfeld, J. Med. Chem., 1981, 24, 67.
- 612. S. Takano, M. Akiyama, and K. Ogasawara, J. Chem. Soc., Perkin Trans. 1, 1985, 2447.
- 613. D. M. Walba, K. F. Eidman, R. C. Haltiwanger, J. Org. Chem., 1989, **54**, 4939.
- 614. J. Krapcho, C. Turk, D. W. Cushman, J. R. Powell, J. M. De Forrest, E. R. Spitzmiller, D. S. Karanewsky, M. Duggan, G. Rovnvak, J. Schwartz, S. Natarajan, J. D. Godfrey, D. E. Ryano, R. Neubeck, K. S. Atwal, and E. W. Petrillo, J. Med. Chem., 1988, **31**, 1148.
- 615. N. Chida, M. Ohtsuka, and S. Ogawa, Chem. Lett., 1988, 969.
- 616. H. P. Isenring and W. Hofheinz, Tetrahedron 1983, 39, 2591.
- 617. M. Petitou, P. Duchaussoy, and J. Choay, Tetrahedron Lett., 1988, **29**, 1389.

- 618. F. Yamazaki, T. Nukada, Y. Ito, S. Sato, and T. Ogawa, Tetrahedron Lett., 1989, **30**, 4417.
- 619. N. Nakamura, H. Miyazaki, N. Ohkawa, T. Oshima, and H. Koike, Tetrahedron Lett., 1990, **31**, 699.
- 620. K. Sakai, Y. Nakahara, and T. Ogawa, Tetrahedron Lett., 1990, 31, 3035.
- 621. I. Abushanab and M. S. P. Sarma, J. Med. Chem., 1989, 32, 76.
- 622. G. W. J. Fleet and T. K. M. Shing, Tetrahedron Lett., 1983, 24, 3657.
- 623. S. Achab and B. C. Das, Synth. Commun., 1982, 12, 931.
- 624. S. Takano, K. Seya, E. Goto, M. Hirama, and K. Ogasawara, Synthesis, 1983, 116.
- 625. C. Jiang, R. J. Suhadolnik, and D. C. Baker, Nucleosides, Nucleotides, 1988, **7**, 271.
- 626. P. Vemishetti, R. Saibaba, R. P. Panzica, and E. Abushanab, J. Med. Chem., 1990, **33**, 681.
- 627. E. Abushanab, M. Bessodes, and K. Antonakis, Tetrahedron Lett., 1984, 25, 3841.
- 628. R. D. Guthrie, I. D. Jenkins, S. Thang, and R. Yamasaki, Carbohydr. Res., 1988, **176**, 306.
- 629. K. Capek, T. Vydra, M. Ranny, and P. Sedmera, Coll. Czech. Chem. Commun., 1985, **50**, 2191.
- 630. M. Kinoshita, M. Morioka, M. Taniguchi, and J. Shimizu, Bull. Chem. Soc., Jpn., 1987, **60**, 4005.
- 631. W. Kirmse and U. Mrotzeck, Chem. Ber., 1988, 121, 485.
- 632. Abd El Samii, A. Ashmaway, and J. M. Mellor, J. Chem. Soc., Perkin Trans. 1, 1988, 2509.
- 633. J. F. Hoover and J. M. Stryker, J. Am. Chem. Soc., 1989, 111, 6466.
- 634. M. M. Francl, G. Hansell, B. P. Patel, and C. S. Swindell, J. Am. Chem. Soc., 1990, **112**, 3535.
- 635. B. H. Lee, A. Biswas, and M. J. Miller, J. Org. Chem., 1986, 51, 106.
- 636. T. R. Kelly, C. T. Jagoe, and Q. Li, J. Am. Chem. Soc., 1989, 111, 4522.
- 637. J. W. Huffman and R. C. Desai, J. Org. Chem., 1982, 47, 3254.
- 638. L. A. Paquette and T. Sugimara, J. Am. Chem. Soc., 1986, 108, 3841.
- 639. L. A. Paquette and T. Sugimara, J. Am. Chem. Soc., 1987, 109, 3017.
- 640. A. F. Cichy, P. Vemishetti, and E. Abushanab, Nucleosides, Nucleotides, 1989, **8**, 957.
- 641. V. C. O. Njar, G. Spiteller, J. Wicha, and E. Caspi, Heterocycles, 1989, **28**, 1051.
- 642. C. Yoshida, K. Tanaka, Y. Todo, R. Hattori, Y. Fukukoka, M. Komatsu, and I. Saikawa, J. Antibiotics, 1986, **39**, 90.

- 643. M. R. Harnden and P. G. Wyatt, Tetrahedron Lett., 1990, **31**, 2185.
- 644. R. E. Mewshaw and T. J. Commons, J. Antibiotics, 1987, 40, 1563.
- 645. J. A. Secrist, Nucleosides, Nucleotides, 1987, 6, 73.
- 646. E. Grochowski and H. Stepowska, Synthesis, 1988, 795.
- 647. K. C. Nicolaou and R. D. Groneberg, J. Am. Chem. Soc., 1990, **112**, 4085.
- 648. K. Barlos, D. Papaioannou, and C. Sanida, Justus Liebigs Ann. Chem., 1986, 287.
- 649. K. Barlos, P. Mamos, D. Papaioannou, C. Sanida, and C. Antonopoulous, J. Chem. Soc., Chem. Commun., 1986, 1258.
- 650. W. Pfleiderer, M. Schwarz, and H. Schirmeister, Chemica Scr., 1986, 26, 147.
- 651. B. S. Schulz and W. Pfleiderer, Tetrahedron Lett., 1985, 26, 5421.
- 652. M. J. Miller, A. Biswas, and M. A. Krook, Tetrahedron, 1983, 39, 2571.
- 653. A. van Aerschot, P. Herjewijn, G. Janssen, and H. Vanderhaeghe, Nucleosides, Nucleotides, 1988, **7**, 519.
- 654. J. Hiebl, E. Zbiral, J. Balzarini, and E. De Clercq, J. Med. Chem., 1990, **33**, 845.
- 655. H. H. Brandstetter and E. Zbiral, Justus Liebigs Ann. Chem., 1983, 2055.
- 656. I. Kieper, T. Schmidt, B. Fera, and H. Ruterjans, Nucleosides, Nucleotides, 1988, **7**, 821.
- 657. A. van Aerschot, M. Mag, P. Herdewijn, and H. Vanderhaeghe, Nucleosides, Nucleosides, 1989, **8**, 159.
- 658. S. Czernecki and J.-M. Valery, J. Chem. Soc., Chem. Commun., 1990, 801.
- 659. M. Mag and J. W. Engels, Nucl. Acid Res., 1988, 16, 3525.
- 660. A. van Aerschot, B. Peeters, and H. Vanderhaeghe, Nucleosides, Nucleotides, 1987, 6, 437.
- 661. H. Takaku, S. Ueda, and Y. Tomita, Chem. Pharm. Bull., 1984, 32, 2882.
- 662. B. S. Schulz and W. Pfleiderer, Nucleosides, Nucleotides, 1987, 6, 529.
- 663. J. F. Habener, C. D. Vo, G. P. Gryan, L. Ercolani, and A. H. Wang, Proc. Natl. Acad. Sci. USA, 1988, 85, 1735.
- 664. M. J. Dahma and K. K. Ogilvie, J. Org. Chem., 1988, 53, 3710.
- 665. P. Herdewijn, J. Balzarini, M. Baba, R. Pauwels, A. van Aerschot, G. Janssen, and E. De Clerq, J. Med. Chem., 1988, **31**, 2040.
- 666. M. J. Wanner and G. J. Koomen, Tetrahedron Lett., 1989, **30**, 2301.
- 667. L. Grehn and U. Ragnarsson, Coll. Czech. Chem. Commun., 1988, **53**, 2778.
- 668. M. Suzuki, H. Maeda, K. Kondo, H. Sugano, and K. Matsumoto, Chem.

Pharm. Bull., 1989, **37**, 1764.

- 669. G. J. Hitchings, M. Helliwell, and J. M. Vernon, J. Chem. Soc., Perkin Trans. 1, 1990, 83.
- 670. J.-W. Choi and D. J. Hart, Tetrahedron, 1985, 41, 3959.
- 671. D. L. Boger and S. M. Sakya, J. Org. Chem., 1988, 53, 1415.
- 672. P. N. W. van der Vliet, J. A. M. Hamersma, and W. N. Speckamp, Tetrahedron, 1985, **41**, 2007.
- 673. B. P. Wijnberg, W. N. Speckamp, and A. R. C. Oostveen, Tetrahedron, 1982, **38**, 209.
- 674. J. A. M. Hamersma and W. N. Speckamp, Tetrahedron, 1982, 38, 3255.
- 675. D. A. Burnett, J.-K. Choi, D. J. Hart, and Y.-M. Tsai, J. Am. Chem. Soc., 1984, **106**, 8201.
- 676. J. M. Dener and D. J. Hart, Tetrahedron, 1988, 44, 7037.
- 677. Z.-K. Liao and H. Kohn, J. Org. Chem., 1984, 49, 3812.
- 678. L. F. Cannizzo and R. H. Grubs, J. Org. Chem., 1985, 50, 2316.
- 679. R. K. Saiki, P. S. Walsh, C. H. Levenson, and H. A. Erlich, Proc. Natl. Acad. Sci. USA, 1989, **86**, 6230.
- 680. H. Yamada, K. Kurumaya, T. Eguchi, and M. Kajiwara, J. Lab. Comp. Radiopharm., 1987, **24**, 561.
- 681. P. M. M. Nossin and W. N. Speckamp, Tetrahedron Lett., 1981, 22, 3289.
- 682. J. A. M. Hamersma, P. M. M. Nossin, and W. N. Speckamp, Tetrahedron, 1985, **41**, 1999.
- 683. P. G. Baraldi, M. Guarneri, F. Moroder, G. P. Pollini, and D. Simoni, Synthesis, 1982, 653.
- 684. A. Doutheau, A. Saba, and J. Gore, Tetrahedron Lett., 1982, 23, 2461.
- 685. S. Kano, Y. Yuasa, T. Yokomatsu, and S. Shibuya, J. Org. Chem., 1983, 48, 3835.
- 686. S. Kano, Y. Yuasa, T. Yokomatsu, and S. Shibuya, Heterocycles, 1984, **22**, 1411.
- 687. A. L. Castelhano and A. Krantz, J. Am. Chem. Soc., 1984, 106, 1877.
- 688. H. Ent, H. de Konig, and W. N. Speckamp, Tetrahedron Lett., 1985, **26**, 5105.
- 689. P. G. Sammes and D. Thetford, J. Chem. Soc., Perkin Trans. 1, 1989, 655.
- 690. J. Mulzer, A. Angermann, B. Schubert and C. Seilz, J. Org. Chem., 1986, 51, 5294.
- 691. P. M. M. Nossin, J. A. M. Hamersma, and W. N. Speckamp, Tetrahedron Lett., 1982, **23**, 3807.
- 692. H. lida, N. Yamazaki, and C. Kibayashi, J. Chem. Soc., Chem. Commun.,

1987, 746.

- 693. H.-G. Capraro, M. Lang, and P. Schneider, Heterocycles, 1989, 28, 643.
- 694. R. B. Silverman and G. M. Banik, J. Am. Chem. Soc., 1987, 109, 2219.
- 695. S. Kano, Y. Yuasa, T. Yokomatsu, and S. Shibuya, Synthesis, 1983, 585.
- 696. S. Kano, Y. Yuasa, T. Yokomatsu, and S. Shibuya, Heterocycles, 1983, **20**, 2411.
- 697. A. R. Chamberlin, H. D. Nguyen, and J. Y. L. Chung, J. Org. Chem., 1984, **49**, 1682.
- 698. A. R. Chamberlin and J. Y. L. Chung, Tetrahedron Lett., 1982, 23, 2619.
- 699. R. P. Polniaszek, S. E. Belmont, and R. Alvarez, J. Org. Chem., 1990, 55, 215.
- 700. A. R. Chamberlin and J. Y. L. Chung, J. Am. Chem. Soc., 1983, **105**, 3653.
- 701. L. S. Hegedus and J. M. McKearin, J. Am. Chem. Soc., 1982, **104**, 2444.
- 702. D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 1984, 106, 8209.
- 703. S. Kano, Y. Yuasa, K. Asami, and S. Shibuya, Chem. Lett., 1986, 735.
- 704. C. Flann, T. C. Malone, and L. E. Overman, J. Am. Chem. Soc., 1987, **109**, 6097.
- 705. L. E. Overman, T. C. Malone, and G. P. Meier, J. Am. Chem. Soc., 1983, **105**, 6993.
- 706. A. Shirahata, T. Morohoshi, and K. Samejima, Chem. Pharm. Bull., 1988, **36**, 3220.
- 707. K. Ramalingam, P. Nanjappan, D. M. Kalvin, and R. W. Woodard, Tetrahedron, 1988, **44**, 5597.
- 708. J. Mittendorf, H. Hiemstra, and W. N. Speckamp, Tetrahedron, 1990, **46**, 4049.
- 709. H. Hiemstra and W. N. Speckamp, Tetrahedron Lett., 1983, 24, 1407.
- 710. J.-C. Gramain and R. Remuson, Tetrahedron Lett., 1985, 26, 327.
- 711. Z.-K. Liao and H. Kohn, J. Org. Chem., 1985, 50, 1884.
- 712. T. Kametani, H. Yukawa, and T. Honda, J. Chem. Soc., Chem. Commun., 1988, 685.
- 713. F. Hammerschmidt, Justus Liebigs Ann. Chem., 1988, 537.
- 714. A. Ohta, Y. Aoyagi, Y. Kurihara, K. Huasa, and M. Shimazaki, Heterocycles, 1987, **26**, 3181.
- 715. A. Ohta, Y. Aoyagi, Y. Kurihara, K. Yuasa, and M. Shimazaki, Heterocycles, 1988, **27**, 437.
- 716. B. P. Wijnberg and W. N. Speckamp, Tetrahedron Lett., 1981, 22, 5079.
- 717. R. J. Miller, A. Kulipulos, and J. K. Coward, J. Org. Chem., 1989, **54**, 3436.

- 718. T. Kametani, H. Yukawa, and T. Honda, J. Chem. Soc., Perkin Trans. 1, 1990, 571.
- 719. K. Shishido, Y. Sukegawa, K. Fukumoto, and T. Kametani, Heterocycles, 1985, **23**, 1629.
- 720. K. Shishido, Y. Sukegawa, K. Fukumoto, and T. Kametani, J. Chem. Soc., Perkin Trans. 1, 1987, 993.
- 721. S. Kano, Y. Yuasa, T. Yokomatsu, K. Asami, and S. Shibuya, J. Chem. Soc., Chem. Commun., 1986, 1717.
- 722. H. Ent, H. de Konig, and W. N. Speckamp, J. Org. Chem., 1986, **51**, 1687.
- 723. H. Ent, H. de Konig, and W. N. Speckamp, Tetrahedron Lett., 1983, **24**, 2109.
- 724. G. Riggio, A. J. Raeber and W. H. Hopff, Helv. Chim. Acta, 1989, **72**, 1216.
- 725. S. Inoue, H. Takaya, K. Tani, S. Otsuka, T. Sato, and R. Noyori, J. Am. Chem. Soc., 1990, **112**, 4897.
- 726. D. J. Hart and K. Kanai, J. Org. Chem., 1982, 47, 1555.
- 727. I. R. Trehan, G. L. Kad, S. Rani, and R. Bala, Ind. J. Chem., 1985, **24B**, 659.
- 728. R. R. Bukownik and C. S. Wilcox, J. Org. Chem., 1988, 53, 463.
- 729. M. Kolb, J. Barth, J. G. Heydt, and M. J. Jung, J. Med. Chem., 1987, **30**, 267.
- 730. D. J. Hart, J. Org. Chem., 1981, 46, 3576.
- 731. D. J. Hart and K. Kanai, J. Am. Chem. Soc., 1983, 105, 1255.
- 732. O. P. Vig, I. R. Trehan, G. L. Kad, and J. Ghose, Ind. J. Chem., 1983, **22B**, 516.
- 733. O. P. Vig, I. R. Trehan, G. L. Kad, S. Kumari, and A. L. Bedi, J. Ind. Chem. Soc., 1985, **62**, 238.
- 734. J. Mulzer, B. Buttelman, and W. Munch, Justus Liebigs Ann. Chem., 1988, 445.
- 735. A. Morikawa, T. Sone, and T. Asano, J. Med. Chem., 1989, 32, 46.
- 736. P. Casara, C. Danzin, B. Metcalf, and M. Jung, J. Chem. Soc., Perkin Trans. 1, 1985, 2201.
- 737. P. Casara, C. Danzin, B. Metcalf, and M. Jung, J. Chem. Soc., Chem. Commun., 1982, 1190.
- 738. L. Amariutet, G. Descotes, C. Kugel, J.-P. Maitre, and J. Mentech, J. Carbohydr. Chem., 1988, **7**, 21.
- 739. S. Kano and Y. Yuasa, Heterocycles, 1983, 20, 857.
- 740. C. K. Hiebert and R. B. Silverman, J. Med. Chem., 1988, 31, 1566.
- 741. J. N. Zonjee, H. de Konig, and W. N. Speckamp, Tetrahedron, 1989, 45,

7553.

- 742. J. Y. L. Chung and J. T. Wasicak, Tetrahedron Lett., 1990, 31, 3957.
- 743. I. R. Trehan, R. L. Kaul, R. K. Sharma, and J. Singh, Ind. J. Chem., 1982, **21B**, 197.
- 744. I. R. Trehan, R. Bala, D. K. Trikha, and J. Singh, Ind. J. Chem., 1981, **20B**, 1022.
- 745. H. Ent, H. De Konig, and W. N. Speckamp, Heterocycles, 1988, 27, 237.
- 746. S. Takano, Y. Iwabuchi, and K. Ogasawa, J. Chem. Soc., Chem. Comm., 1988, 1527.
- 747. A. L. Castelhano and A. Krantz, J. Am. Chem. Soc., 1987, 109, 3491.
- 748. C. Danzin, P. Bey, D. Schirlin, and N. Claverie, Biochem. Pharm., 1982, **31**, 3871.
- 749. I. R. Trehan, M. Vig, and K. Bala, Ind. J. Chem., 1982, **21B**, 200.
- 750. S. Takano, M. Moriya, Y. Iwabuchi, and K. Ogasawara, Tetrahedron Lett., 1989, **30**, 3805.
- 751. S. Takano, K. Inomata, T. Sato, M. Talxahashi, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1990, 290.
- 752. S. Kato, T. Morie, K. Hino, T. Kon, S. Naruto, N. Yoshida, T. Karasawa, and J. Matsumoto, J. Med. Chem., 1990, **33**, 1406.
- 753. N. Yamazaki and C. Kibayashi, J. Am. Chem. Soc., 1989, **111**, 1396.
- 754. D. A. Kendrick, C. Danzin, and M. Kolb, J. Med. Chem., 1989, 32, 170.
- 755. M. van Marsenille, C. Gysen, D. Tourwe, and G. van Binst, Bull. Soc. Chim., Belg., 1986, **95**, 127.
- 756. S. Kano, Y. Yuasa, T. Yokomatsu, K. Asami, and S. Shibuya, Chem. Pharm. Bull., 1988, **36**, 2934.
- 757. B. De, J. J. Plattner, E. N. Bush, H. S. Jae, G. Diaz, E. S. Johnson, and T. J. Perun, J. Med. Chem., 1989, **32**, 2036.
- 758. S. Takano, M. Moriya, Y. Iwabuchi, and K. Ogasawara, Chem. Lett., 1990, 109.
- 759. N. Saito, N. Kawakami, E. Yamada, and A. Kubo, Chem. Pharm. Bull., 1989, **37**, 1493.
- 760. J. D. McChesney and S. Sarangan, J. Label. Comp. Radiopharm., 1984, 21, 293.
- 761. S. Kano, T. Yokomatsu, H. Nemoto, and S. Shibuya, J. Org. Chem., 1986, **51**, 561.
- 762. S. Kano, T. Yokomatsu, H. Nemoto, and S. Shibuya, Tetrahedron Lett., 1985, 26, 1531.
- 763. S. Kano, T. Yokomatsu, H. Nemoto, and S. Shibuya, Chem. Lett., 1986, 143.
- 764. I. R. Trehan, J. Singh, and K. Bala, Ind. J. Chem., 1982, 21B, 514.

- 765. S. Kano, T. Yokomatsu, H. Nemoto, and S. Shibuya, J. Am. Chem. Soc., 1986, **108**, 6746.
- 766. G. E. Keck, E. J. Enholm, Tetrahedron Lett., 1985, 26, 3311.
- 767. E. Laborde, L. E. Lesheski, and J. S. Kiely, Tetrahedron Lett., 1990, **31**, 1837.
- 768. S. Takano, S. Otaki, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1983, 1172.
- 769. G. E. Keck, E. N. K. Cressman, and E. J. Enholm, J. Org. Chem., 1989, 54, 4335.
- 770. M. Gall and B. V. Kamdar, J. Org. Chem., 1981, 46, 1575.
- 771. M. Alpegiani, A. Bedeschi, E. Perrone, F. Zarini, and G. Franceschi, Heterocycles, 1988, **27**, 1329.
- 772. T. K. Chakraborty and S. P. Joshi, Tetrahedron Lett., 1990, **31**, 2043.
- 773. M. Sendai, S. Hashiguchi, M. Tomimoto, S. Kishimoto, T. Matsuo, M. Kondo, and M. Ochiai, J. Antibiotics, 1985, **38**, 346.
- 774. N. Sakairi, M. Hayashida, A. Amano, and H. Kuzuhara, J. Chem. Soc., Perkin Trans. 1, 1990, 1301.
- 775. M. F. Farnum and J. P. Klinman, Biochemistry, 1986, **25**, 6028.
- 776. H. lida, N. Yamazaki, and C. Kibayashi, Tetrahedron Lett., 1985, **26**, 3255.
- 777. Y. Nishimura, W. Wang, S. Kondo, T. Aoyagi, and H. Umezawa, J. Am. Chem. Soc., 1988, **110**, 7249.
- 778. A. B. Tabor, A. B. Holmes, and R. Baker, J. Chem. Soc., Chem. Commun., 1989, 1025.
- 779. K.-H. Ongania and M. Wallnofer, Arch. Pharm., 1985, **318**, 2.
- 780. A. B. Reitz, R. W. Tuman, C. S. Marchione, A. D. Jordan, Jr., C. R. Bowden, and B. E. Maryanoff, J. Med. Chem., 1989, **32**, 2110.
- 781. A. Kubo, N. Saito, R. Yamauchi, and S. Sakai, Chem. Pharm. Bull., 1987, 35, 2158.
- 782. A. Kubo, N. Saito, H. Yamato, K. Masubuchi, and M. Nakamura, J. Org. Chem., 1988, **53**, 4295.
- 783. C. S. Wilcox and M. D. Cowart, Carbohydr. Res., 1987, **171**, 141.
- 784. S. Takano, S. Otaki, and K. Ogasawara, Chem. Lett., 1983, 175.
- 785. N. Chida, Y. Furuno, and S. Ogawa, J. Chem. Soc., Chem. Commun., 1989, 1230.
- 786. J. D. Rozzell, Methods in Enzymology, 1987, 136, 479.
- 787. M. C. Viaud and P. Rollin, Synthesis, 1990, 130.
- 788. U. Schmidt, P. Gleich, H. Greisser, and R. Utz, Synthesis, 1986, 992.
- 789. J. F. Callahan, D. Ashton-Shue, H. G. Bryan, W. M. Bryan, G. D.

Heckman, L. B. Kinter, J. E. McDonald, M. L. Moore, D. B. Schmidt, J. S. Silvestri, F. L. Stassen, L. Sulat, N. C. F. Yim, and W. F. Huffman, J. Med. Chem., 1989, **32**, 391.

- 790. M. Otsuka, A. Kittaka, T. limori, H. Yamashita, S. Kobayashi, and M. Ohno, Chem. Pharm. Bull., 1985, 33, 509.
- 791. M. Bessodes, I. Abushanab, and K. Antonakis, Tetrahedron Lett., 1984, **25**, 5899.
- 792. F. Hammerschmidt, Justus Liebigs Ann. Chem., 1988, 955.
- 793. F. Hammerschmidt and H. Vollenkle, Justus Liebigs Ann. Chem., 1989, 577.
- 794. S. Takano, T. Sugihara, S. Satoh, and K. Ogasawara, J. Am. Chem. Soc., 1988, **110**, 6467.
- 795. B. T. Golding and C. Howes, J. Chem. Res. (S), 1984, 1.
- 796. W. Schmid and E. Zbiral, Monatsh. Chem., 1983, **114**, 1253.
- 797. B. T. Golding, M. C. O'Sullivan, and L. L. Smith, Tetrahedron Lett., 1988, **29**, 6651.
- 798. A. Hassner and W. Dehaen, J. Org. Chem., 1990, 55, 2243.
- 799. J.-R. Schauder, S. Jendrezejewski, A. Abell, G. J. Hart, and A. R. Battersby, J. Chem. Soc., Chem. Commun., 1987, 436.
- 800. H. Brunner, P. Hankofer, and B. Treittinger, Chem. Ber., 1990, 1029.
- 801. S. Oida, A. Yoshida, T. Hayashi, N. Takeda, and E. Ohki, Chem. Pharm. Bull., 1980, **28**, 3258.
- 802. Y. Masaki, Y. Serizawa, K. Nagata, H. Oda, H. Nagashima, and K. Kaji, Tetrahedron Lett., 1986, **27**, 231.
- 803. D. F. Taber, P. B. Deker, H. M. Fales, T. H. Jones, and H. A. Lloyd, J. Org. Chem., 1988, 53, 2968.
- 804. A. P. Kozikowski and W. Tuckmantel, Tetrahedron Lett., 1989, 30, 4613.
- 805. S. De Bernardo, J. P. Tengi, G. Sasso, and M. Weigele, Tetrahedron Lett., 1988, **29**, 4077.
- 806. H. H. Brandstetter, E. Zbiral, and G. Schulz, Justus Liebigs Ann. Chem., 1982, 1.
- 807. W. H. Pearson and J. V. Hines, J. Org. Chem., 1989, 54, 4235.
- 808. K. Clinch, A. Vasella, and R. Schauer, Tetrahedron Lett., 1987, 28, 6425.
- 809. M. Nakano, S. Atsuumi, Y. Koike, S. Tanaka, H. Funabashi, J. Hashi moto, and H. Morishima, Tetrahedron Lett., 1990, **31**, 1569.
- S. H. Rosenberg, J. F. Dellaria, D. J. Dempf, C. W. Hutchins, K. W. Woods, R. B. Maki, E. de Lara, K. P. Spina, H. H. Stein, J. Cohen, W. R. Baker, J. J. Plattner, H. D. Kleinert, and T. J. Perun, J. Med. Chem., 1990, 33, 1582.
- 811. P. G. Mattingly and M. J. Miller, J. Org. Chem., 1981, 46, 1557.

- 812. H. Breuer, H. Straub, U. D. Treuner, J.-M. Drossand, H. Hohn, and K. R. Lindner, J. Antibiotics, 1985, **38**, 813.
- 813. C. Yoshida, K. Tanaka, J. Nakano, Y. Todo, T. Yamafugi, R. Hattori, Y. Fukuoka, and I. Saikawa, J. Antibiotics, 1986, **39**, 76.
- 814. G. Costerousse and G. Teutsch, Tetrahedron, 1986, 42, 2685.
- 815. M. Shibuya, Y. Jinbo, and S. Kubota, Chem. Pharm. Bull., 1984, **32**, 1303.
- 816. H. Yamada, H. Sugiyama, and M. Kajiwara, Heterocycles, 1987, **26**, 2841.
- 817. S. Thaisrivongs, H. J. Schostarez, D. T. Pals, and S. R. Turner, J. Med. Chem., 1987, **30**, 1837.
- 818. D. P. Sahu, P. Mashava, M. S. Manhas, and A. K. Bose, J. Org. Chem., 1983, 48, 1142.
- 819. C. Gennari, G. Schimperna, and I. Venturini, Tetrahedron, 1988, **44**, 4221.
- 820. H. J. Schostarez, J. Org. Chem., 1988, 53, 3628.
- 821. C. K. Zercher and M. J. Miller, Tetrahedron Lett., 1989, 30, 7009.
- 822. B. M. Kim and K. B. Sharpless, Tetrahedron Lett., 1990, **31**, 4317.
- 823. P. G. Mattingly and M. J. Miller, J. Org. Chem., 1983, 48, 3556.
- 824. A. Biswas, C. Eigenbrot, and M. J. Miller, Tetrahedron, 1986, 42, 6421.
- 825. F. R. Atherton and R. W. Lambert, Tetrahedron, 1983, 39, 2599.
- 826. W. A. Slusarchyk, J. Dejneka, E. M. Gordon, E. R. Weaver, and W. H. Koster, Heterocycles, 1984, 21, 191.
- 827. E. M. Gordon, M. A. Ondetti, J. Pluscec, C. M. Cimarusti, D. P. Bonner, and R. B. Sykes, J. Am. Chem. Soc., 1982, **104**, 6053.
- 828. A. Andrus, B. Partridge, J. V. Heck, B. G. Christensen, and J. P. Springer, Heterocycles, 1984, **22**, 1713.
- 829. C. Yoshida, K. Tanaka, R. Hattori, Y. Fukuoka, M. Komatsu, S. Kishimoto, and I. Saikawa, J. Antibiotocs, 1986, **39**, 215.
- 830. C.-N. Hsiao, S. P. Ashburn, and M. J. Miller, Tetrahedron Lett., 1985, **26**, 4855.
- 831. F. R. Atherton and R. W. Lambert, Tetrahedron, 1984, 40, 1039.
- 832. W. V. Curran, A. A. Ross, and V. J. Lee, J. Antibiotics, 1988, 41, 1418.
- 833. M. A. Williams and M. J. Miller, Tetrahedron Lett., 1990, 31, 1807.
- 834. C. C. Wei, S. De Bernardo, J. P. Tengi, J. Borgese, and M. Weigele, J. Org. Chem., 1985, **50**, 3462.
- 835. G. Costerousse, A. Cagniant, and G. Teutsch, Bull. Chim. Soc., Fr., 1988, 151.
- 836. A. Andrus, B. Partridge, J. V. Heck, and B. G. Christensen, Tetrahedron

Lett., 1984, **25**, 911.

- 837. D. W. Anderson, M. M. Campbell, and M. Malik, Tetrahedron Lett., 1990, 31, 1755.
- 838. J. F. Kadow, D. M. Vyas, and T. W. Doyle, Tetrahedron Lett., 1989, **30**, 3299.
- 839. K. Ramasamy, R. K. Olsen, and T. Emery, J. Org. Chem., 1981, **46**, 5438.
- 840. M. L. Edwards, D. M. Stemerick, and J. R. McCarthy, Tetrahedron Lett., 1990, **31**, 3417.
- 841. P. H. J. Carlsen and O. R. Gautun, Acta Chem. Scand., 1990, 44, 485.
- 842. D. L. Boger, R. S. Coleman, and B. J. Invergo, J. Org. Chem., 1987, **52**, 1521.
- 843. C. G. Overberger and J. Y. Chang, Tetrahedron Lett., 1989, 30, 51.
- 844. R. W. Feenstra, E. H. M. Stokkingreef, R. J. F. Nivard, and H. C. J. Ottenheijm, Tetrahedron, 1988, **44**, 5583.
- 845. B. H. Lee and M. J. Miller, J. Org. Chem., 1983, 48, 24.
- 846. K. Nakajima, M. Morishita, and K. Okawa, ""Peptide Chem. 1983,"" (Ed. E. Munkata), Protein Research Foundation, Osaka, 1984, pp. 77–80.
- 847. K. Minamoto, K. Azuma, T. Tanaka, H. Iwasaki, S. Eguchi, S. Kadoya, and R. Moroi, J. Chem. Soc., Perkin Trans. 1, 1988, 2955.
- 848. H. Bottcher and B. Arzt, Angew. Chem., Int. Ed. Engl., 1984, 23, 518.
- 849. H. J. Bestman and D. Roth, Angew. Chem., Int. Ed. Engl., 1990, 29, 99.
- 850. D. L. Boger and R. S. Coleman, J. Org. Chem., 1986, 51, 3250.
- 851. D. L. Boger and R. S. Coleman, J. Am. Chem. Soc., 1987, 109, 2717.
- 852. V. E. Marquez, C. K. H. Tseng, S. P. Treanor, and J. S. Driscoll, Nucleosides, Nucleotides, 1987, 6, 239.
- 853. B. H. Lee, G. J. Gerfen, and M. J. Miller, J. Org. Chem., 1984, 49, 2418.
- 854. D. H. Boschelli, Synth. Commun., 1988, **18**, 1391.
- 855. J. W. Hertel, C. S. Grossman, J. S. Kroin, S. Mineishib, S. Chubb, B. Nowak, and W. Plunkett, Nucleosides, Nucleotides, 1989, **8**, 951.
- 856. E. K. Dolence, A. A. Minnick, and M. J. Miller, J. Med. Chem., 1990, 33, 461.
- 857. T. H. Kim and H. Rapoport, J. Org. Chem., 1990, 55, 3699.
- 858. R. C. Bernotas, Tetrahedron Lett., 1990, 31, 469.
- 859. R. A. Bell and H. N. Hunter, Tetrahedron Lett., 1987, 28, 147.
- 860. P. Rollin, Tetrahedron Lett., 1986, 27, 4169.
- 861. K. Kpegba and P. Metzner, Synthesis, 1989, 137.
- 862. J. L. Adams, T. D. Meek, S.-M. Mong, R. K. Johnson, and B. W. Metcalf, J. Med. Chem., 1988, **31**, 1355.

- 863. S. J. Gee, T. Miyamoto, M. H. Goodrow, D. Buster, and B. D. Hammock, J. Agric. Food Chem., 1988, **36**, 863.
- 864. Y. Hidaka and Y. Shimonishi, Bull. Chem. Soc., Jpn., 1989, 62, 1986.
- 865. R. E. Dolle, C.-S. Li, and A. N. Shaw, Tetrahedron Lett., 1989, 30, 4723.
- 866. I. D. Jenkins and S. Thang, Aust. J. Chem., 1984, 37, 1925.
- 867. H. Takahata, E. Ohkura, K. Ikuro, and T. Yamazaki, Synth. Commun., 1990, **20**, 285.
- 868. S. E. Hall, W.-C. Han, D. N. Harris, A. Hedberg, and M. L. Ogletree, J. Med. Chem., 1989, **32**, 974.
- 869. I. Fuji, R. Kiyama, K. Kanematsu, Biorg. Chem., 1989, 17, 240.
- 870. K. Kanematsu, T. Yoshiyasu, and M. Yoshida, Chem. Pharm. Bull., 1990, **38**, 1441.
- 871. M. F. Cabal, R. S. Coleman, and S. J. Danishefsky, J. Am. Chem. Soc., 1990, **112**, 3253.
- 872. J. N. Haseltine and S. J. Danishefsky, J. Org. Chem., 1990, 55, 2576.
- 873. R. Breslow, J. Chmielewski, D. Foley, B. Johnson, N. Kumabe, M. Varney, and R. Mehra, Tetrahedron, 1988, **44**, 5515.
- 874. D. R. Compton, P. J. Little, B. R. Martin, J. K. Saha, J. Gilman, H. Sard, and R. K. Razdan, Eur. J. Med. Chem., 1989, 24, 293.
- 875. T. W. Ku, K. H. Kondrad, and J. C. Gleason, J. Org. Chem., 1989, **54**, 3487.
- 876. G. A. Flynn, J. Org. Chem., 1983, 48, 4125.
- 877. M. Nakata, M. Arai, K. Tomooka, N. Ohsawa, and M. Kinoshita, Bull. Chem. Soc., Jpn., 1989, **62**, 2618.
- 878. P. A. Wender and N. C. Ihle, J. Am. Chem. Soc., 1986, 108, 4678.
- 879. D. P. Curran and P. A. van Elburg, Tetrahedron Lett., 1989, 30, 2501.
- 880. M. Georges, D. MacKay, and B. Fraser-Reid, Carbohydr. Res., 1984, 130, 115.
- 881. J. R. Dormoy and B. Castro, Synthesis, 1986, 81.
- 882. Y. Chapleur, F. Germain, A. Aubry, and D. Bayeul, J. Carbohydr. Chem., 1984, **3**, 443.
- 883. H. Kunz and J. Weissmuller, Justus Liebigs Ann. Chem., 1984, 66.
- 884. J. P. Schaumberg, G. C. Hokanson, J. C. French, E. Smal, and D. C. Baker, J. Org. Chem., 1985, **50**, 1651.
- 885. G. I. Georg and J. Kant, J. Org. Chem., 1988, 53, 692.
- 886. I. Zbiral, H. H. Brandstetter, and E. P. Schreiner, Monatsh. Chem., 1988, **119**, 127.
- 887. F. Freeman and K. D. Robarge, Carbohydr. Res., 1987, **171**, 1; 1988, **29**, 6797.